五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Euler's Factorial Integral

2021-08-28 08:21 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

In 1729, Leonhard Euler (1707 - 1783) discovered the integral:

%5Cint_0%5E1%20%7B%5Cleft(-%5Cln%20s%5Cright)%7D%5E%7Bn%7D%20ds%20

Show that the integral?%5Cint_0%5E1%20%7B%5Cleft(-%5Cln%20s%5Cright)%7D%5E%7Bn%7D%20ds is equivalent to the Gamma function %5CGamma%20(n%2B1)%20%3D%20%5Cint_0%5E%5Cinfty%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt; hence, it is equivalent to n! for non-negative integers n.


【Solution】

Let t%20%3D%20-%5Cln%20s, then s%20%3D%20%7Be%7D%5E%7B-t%7D.? Consequently dt%20%3D%20-%5Cfrac%7B1%7D%7Bs%7Dds%20%3D%20-%7Be%7D%5E%7Bt%7Dds, which means ds%20%3D%20-%7Be%7D%5E%7B-t%7Ddt.?

When s%3D0, we have? t%20%3D%20%5Cinfty. When s%3D1, we have? t%20%3D%200. Thus, the original integral transforms to -%5Cint_%5Cinfty%5E0%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt%20 or %20%5Cint_0%5E%5Cinfty%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt%20.

This integral is called he Gamma function, and it is defined as

%5CGamma%20(n%2B1)%20%3D%20%5Cint_0%5E%5Cinfty%20%7Bt%7D%5E%7Bn%7D%20%7Be%7D%5E%7B-t%7D%20dt%20%3D%20n!

for non-negative integers n.

[Calculus] Euler's Factorial Integral的評論 (共 條)

分享到微博請遵守國家法律
滕州市| 深水埗区| 抚松县| 霍州市| 利津县| 永州市| 凤翔县| 漾濞| 通海县| 扎囊县| 大竹县| 临桂县| 三门峡市| 利津县| 沙河市| 石柱| 南溪县| 枣庄市| 和田市| 松潘县| 金溪县| 博野县| 洛宁县| 阳泉市| 喜德县| 淳安县| 仙桃市| 顺平县| 扬州市| 宁城县| 长宁县| 杂多县| 龙泉市| 常德市| 太原市| 徐闻县| 盘山县| 梧州市| 大埔区| 中宁县| 赤峰市|