五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Archimedes' Triumph

2021-11-27 09:19 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

In Volume I of On the ''Sphere and the Cylinder'', Archimedes (c. 287 - 212 BC) determined the volumetric ratio of a sphere to a circumscribed cylinder. The height and width of the cylinder is equal to the diameter of the sphere. What is this ratio?

Archimedes' Sphere in the Cylinder

【Solution】

Let the radius of the sphere be r. The circumscribed cylinder shares the same height and width as the sphere, so?the height of the cylinder is h%20%3D%202r.

The volume of a sphere is %20V_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%20, and the volume of a cylinder is V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20h. Thus, the volume circumscribed cylinder is

%20V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20%5Ctimes%202r

V_%7Bcylinder%7D%20%3D%202%5Cpi%20r%5E3

Therefore, the volumetric ratio of a sphere to its circumscribed cylinder is

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%3A2%5Cpi%20r%5E3

which simplifies to

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%202%3A3

Archimedes


[Geometry] Archimedes' Triumph的評論 (共 條)

分享到微博請遵守國家法律
呼和浩特市| 都兰县| 遵化市| 咸阳市| 墨玉县| 古交市| 太原市| 九龙城区| 海晏县| 宜昌市| 弋阳县| 若羌县| 东海县| 广德县| 儋州市| 城固县| 南开区| 同江市| 岳池县| 长武县| 雷波县| 宾川县| 饶河县| 盐城市| 青浦区| 汕头市| 思茅市| 承德市| 密山市| 永城市| 恩平市| 达州市| 沂水县| 神农架林区| 通榆县| 攀枝花市| 梁平县| 清河县| 溆浦县| 巨鹿县| 远安县|