五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Number Theory] Pythagorean Triples

2021-11-19 09:48 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

A Pythagorean triple is a set of three positive integers (a%2Cb%2Cc) that satisfies the Pythagorean theorem a%5E2%20%2B%20b%5E2%20%3D%20c%5E2. The earliest table of Pythagorean triples can be found on an ancient Babylonian clay tablet called ''Plimpton 322'' (c. 1800 BC). However, the clay tablet does not indicate any knowledge of the Pythagoean triples formula.

Plimpton 322

Derive the formula for generating primitive Pythagorean triples

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)

where %5Cgcd(m%2C%20n)%3D1 and %5Cgcd(a%2Cb%2Cc)%3D1.

【Solution】

The Pythagorean theorem states that for a right triangle with sides a%2Cb%2Cc%20, where c is the longest side, a%5E2%20%2B%20b%5E2%20%3D%20c%5E2.

Subtract b%5E2 on both sides and factorize:

a%5E2%20%3D%20c%5E2%20-%20b%5E2

a%5E2%20%3D%20(c%2Bb)(c-b)

Then divide a%5E2 on both sides:

1%20%3D%20%5Cleft(%5Cfrac%7Bc%2Bb%7D%7Ba%7D%5Cright)%5Cleft(%5Cfrac%7Bc-b%7D%7Ba%7D%5Cright)


If %5Cfrac%7Bc-b%7D%7Ba%7D%20 is a rational number, then %20%5Cfrac%7Bc-b%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%2Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D, where %5Cgcd(m%2Cn)%20%3D%201.

Subsequently, %5Cfrac%7Bc%7D%7Ba%7D%20-%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%7D%7Ba%7D%20%2B%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D.

(1) By adding the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bc%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bc%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %5Cgcd(a%2Cc)%20%3D%201; therefore, %20a%20%3D%202mn and c%20%3D%20m%5E2%20%2B%20n%5E2%20.

(2) By subtracting the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bb%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bb%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %20%5Cgcd(a%2Cb)%20%3D%201; therefore, a%20%3D%202mn and b%20%3D%20m%5E2%20-%20n%5E2.

Therefore, the primitive Pythagorean triples formula is

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)%20


To generate all Pythagorean triples, one can scale each side by a common factor k that is a positive integer.

(a%2Cb%2Cc)%20%3D%20%5Cleft(2kmn%2C%20k(m%5E2-n%5E2)%2C%20k(m%5E2%2Bn%5E2)%5Cright)



[Number Theory] Pythagorean Triples的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
抚顺县| 家居| 陵水| 福泉市| 巨鹿县| 铁力市| 安图县| 晋州市| 尼勒克县| 罗城| 仁布县| 岐山县| 东兴市| 湖南省| 平湖市| 武强县| 凤庆县| 垫江县| 方城县| 图们市| 博野县| 普兰县| 绵竹市| 鹿邑县| 陈巴尔虎旗| 梨树县| 泸水县| 永丰县| 密云县| 徐闻县| 南和县| 辽宁省| 合江县| 新郑市| 喀喇沁旗| 镇赉县| 仁怀市| 麻阳| 翼城县| 盘锦市| 阳山县|