五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Geometry] Prismoidal Formula

2021-11-21 10:53 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

A ''prismatoid'' is a polyhedron whose vertices all lie in one or the other of two parallel planes. The perpendicular distance between the two planes is called the ''height'' or ''altitude''. The faces that lie in the parallel planes are called the ''bases'' of the prismatoid. The ''midsection'' is the polygon formed by cutting the prismatoid by a plane parallel to the bases halfway between them.

The volume of a prismatoid is given by the “prismoidal formula”:

V%20%3D%20%5Cfrac%7Bh%7D%7B6%7D%5Cleft(A_T%20%2B%204A_M%20%2B%20A_B%20%5Cright)

where h is the height, A_T%20 is the area of the top base, A_M is the area of the midsection, and A_B is the area of the bottom base.

Use the prismoidal formula to determine the volume of the following solids:

(1) Cube
(2) Paraboloid
(3) Sphere
(4) Bicylinder

【Solution】

(1) Cube

The cube is a square prism. Let the length of each edge be d. The area of the top base, midsection and bottom base must all be the same; hence, %20A_T%20%3D%20A_M%20%3D%20A_B%20%3D%20d%5E2.


%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%5Cleft(d%5E2%20%2B%204%20%5Ctimes%20d%5E2%2B%20d%5E2%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%20%5Ctimes%206d%5E2%20%5C%5C%0AV%20%26%3D%20d%5E3%0A%5Cend%7Balign%7D


(2) Paraboloid

Let h be the height of the paraboloid. The base of a paraboloid is a circle with radius r. The top of the paraboloid is a point with no area. The midsection is harder to determine. From

Volume of a Paraboloid it is found that the radius of a paraboloid as a function of height is

%20r(x)%20%3D%20%5Cfrac%7Br%7D%7B%5Csqrt%7Bh%7D%7D%20%5Csqrt%7Bx%7D

Thus at x%20%3D%20%5Cfrac%7Bh%7D%7B2%7D, the radius of the circle at the midsection is r_M%20%3D%20%5Cfrac%7Br%7D%7B%5Csqrt%7B2%7D%7D and the area of the midsection is %20A_M%20%3D%20%5Cpi%7B(r_M)%7D%5E2%20%3D%20%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D.

%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bh%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20%5Cleft(%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D%5Cright)%2B%20%5Cpi%20r%5E2%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bh%7D%7B6%7D%20%5Ctimes%203%5Cpi%20r%5E2%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B%5Cpi%20r%5E2%20h%7D%7B2%7D%20%5C%5C%0A%5Cend%7Balign%7D


(3) Sphere

Let r be the radius of the sphere. The the top base and bottom base of a sphere are points with no area; hence, A_T%20%3D%20A_B%20%3D%200. The midsection is a circle with area %5Cpi%20r%5E2.


%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7B2r%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20%5Cpi%20r%5E2%2B%200%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B2r%7D%7B6%7D%5Ctimes%204%5Cpi%20r%5E2%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%0A%5Cend%7Balign%7D



(4) Bicylinder

The the top and base of the bicylinder are points with no area; hence, %20A_T%20%3D%20A_B%20%3D%200. The midsection is a square with area d%5E2.

%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20d%5E2%2B%200%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%20%5Ctimes%204d%5E2%20%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B2d%5E3%7D%7B3%7D%0A%5Cend%7Balign%7D


[Geometry] Prismoidal Formula的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
明光市| 隆化县| 巩留县| 南阳市| 罗江县| 深水埗区| 屯留县| 东方市| 肇州县| 文山县| 凤庆县| 慈利县| 汝州市| 新田县| 万源市| 盘锦市| 凤冈县| 彭泽县| 英德市| 仁怀市| 临沭县| 疏勒县| 锡林浩特市| 滨海县| 伊金霍洛旗| 钟祥市| 蓬安县| 古交市| 台北县| 玉田县| 武平县| 辰溪县| 五峰| 河北区| 宁明县| 景泰县| 南汇区| 九台市| 历史| 通城县| 武强县|