五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Algebra] Product of Two Negative Numbers

2021-07-16 13:22 作者:AoiSTZ23  | 我要投稿

?By: Tao Steven Zheng (鄭濤)

【Problem】

Prove why the product of two negative real numbers is a positive real number.

【Solution】

Let a%2Cb? be two positive real numbers; subsequently, -a and -b?are their respective additive inverses.

A clever way to prove that (-a)(-b)%3Dab is to begin by considering the equation

x%3Dab%2B(-a)(b)%2B(-a)(-b)

and then use this equation to show that x%3Dab%20 and x%3D(-a)(-b).


First, factor out -a from the expression (-a)(b)%2B(-a)(-b):

x%3Dab%2B(-a)(b)%2B(-a)(-b)

x%3Dab%2B(-a)%5Bb%2B(-b)%5D

Since b%2B(-b)%3D0,

x%20%3D%20ab%20%2B%20(-a)(0)

Thus,

x%3Dab

Now, with the original equation, factor out b?from the expression ab%2B(-a)(b):

x%3Dab%2B(-a)(b)%2B(-a)(-b)

x%3Db%5Ba%2B(-a)%5D%2B(-a)(-b)

x%3Db(0)%2B(-a)(-b)

Thus,

x%3D(-a)(-b)

Since? x%3Dab%20 and x%3D(-a)(-b), we discover that?

(-a)(-b)%20%3D%20ab

Therefore, the product of two negative numbers is positive.




[Algebra] Product of Two Negative Numbers的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
遂昌县| 海盐县| 乌兰察布市| 鹤庆县| 静海县| 芮城县| 延庆县| 道真| 温宿县| 新源县| 明水县| 大石桥市| 平陆县| 岐山县| 六安市| 朝阳县| 安仁县| 沭阳县| 南投市| 芦山县| 如皋市| 长垣县| 阿荣旗| 潞西市| 诏安县| 顺义区| 华容县| 内丘县| 渝中区| 福州市| 格尔木市| 涟源市| 新巴尔虎左旗| 墨脱县| 睢宁县| 米脂县| 蛟河市| 万源市| 明光市| 崇州市| 五家渠市|