五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Arithmetic Series of Higher Order

2021-10-03 09:18 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Chinese mathematicians of the Song-Yuan period (960 - 1368 AD) investigated finite sums related to the diagonals of Jia Xian's triangle (arithmetic triangle). The following list given names of several finite sums found in Zhu Shijie’s "Suanxue Qimeng" (1299) and "SiYuan Yujian" (1303).

"Suanxue Qimeng" 算學(xué)啟蒙 (Introduction to Mathematics)

"SiYuan Yujian" 四元玉監(jiān) (Jade Mirror of the Four Unknowns)

茭草垛
1%2B2%2B3%2B4%2B...%2Bn%20%3D%20%5Cfrac%7B1%7D%7B2!%7D%20n(n%2B1)

落一形垛
1%2B3%2B6%2B10%2B...%2B%5Cfrac%7B1%7D%7B2!%7Dn(n%2B1)%20%3D%20%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20

撒星形垛
1%2B4%2B10%2B20%2B...%2B%5Cfrac%7B1%7D%7B3!%7Dn(n%2B1)(n%2B2)%20%3D%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)

撒星更落一形垛
1%2B5%2B15%2B35%2B...%2B%20%5Cfrac%7B1%7D%7B4!%7Dn(n%2B1)(n%2B2)(n%2B3)%3D%5Cfrac%7B1%7D%7B5!%7Dn(n%2B1)(n%2B2)(n%2B3)(n%2B4)

These finite sums are called arithmetic series of higher order, which follow the general pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bp!%7Di(i%2B1)(i%2B2)...(i%2Bp-1)%20%3D%20%5Cfrac%7B1%7D%7B(p%2B1)!%7Dn(n%2B1)(n%2B2)...(n%2Bp)

Alternatively this can be expressed as

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D

Prove this identity.


【Solution】

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D

Observe that %20%5Cbinom%7Bp%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D, hence,

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B1%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

By the binomial identity %20%5Cbinom%7Bn-1%7D%7Bk%7D%20%2B%20%5Cbinom%7Bn-1%7D%7Bk-1%7D%20%3D%20%5Cbinom%7Bn%7D%7Bk%7D, we get

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

Following this step-pattern

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bp%2B2%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bp%2B2%7D%7Bp%7D%20%5Cright%5D%20%2B%20%5Cbinom%7Bp%2B3%7D%7Bp%7D%20%2B%20...%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20

until we reach the final term

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cleft%5B%5Cbinom%7Bn%2Bp-1%7D%7Bp%2B1%7D%20%2B%20%5Cbinom%7Bn%2Bp-1%7D%7Bp%7D%20%5Cright%5D%20

Therefore,

%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbinom%7Bi%2Bp-1%7D%7Bp%7D%20%3D%20%5Cbinom%7Bn%2Bp%7D%7Bp%2B1%7D


[Series] Arithmetic Series of Higher Order的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
昌黎县| 东兰县| 连南| 突泉县| 庆阳市| 安西县| 绥化市| 阿拉尔市| 湖州市| 深泽县| 延安市| 曲麻莱县| 台江县| 自治县| 湛江市| 长葛市| 隆林| 娱乐| 调兵山市| 尤溪县| 壤塘县| 无棣县| 鸡东县| 漳浦县| 伊宁县| 家居| 太仆寺旗| 开鲁县| 明水县| 菏泽市| 奉节县| 天柱县| 伽师县| 阿拉善右旗| 尚志市| 富宁县| 巫山县| 夹江县| 临沭县| 林口县| 富裕县|