五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Beltrami Identity

2021-11-28 14:58 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The Beltrami identity, named after the Italian mathematician Eugenio Beltrami (1835 - 1900), is a simplified and less general version of the Euler–Lagrange equation in the calculus of variations.

Show that the Euler-Lagrange equation

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%3D%200

can be written as

%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

Then show that if L does not explicitly depend on t, then

L%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%3D%20C

where C is constant.

Hint:Use the shorthand %5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cdot%7By%7D and %5Cfrac%7Bd%5E2%20y%7D%7Bdt%5E2%7D%20%3D%20%5Cfrac%7Bd%5Cdot%7By%7D%7D%7Bdt%7D%20%3D%20%5Cddot%7By%7D%20.

【Solution】

Note that the total derivative

%20%5Cfrac%7BdL%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cfrac%7Bd%20%5Cdot%7By%7D%7D%7Bdt%7D

can be expressed as

%5Cfrac%7BdL%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%20

Also,

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5B%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20%3D%20%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D

Substituting the above two expressions into

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

gives

%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%20-%20%5Cleft%5B%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200%20


Simplify this expression and factor out -%20%5Cdot%7By%7D:

%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20-%20%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%3D%200%20

-%20%5Cdot%7By%7D%20%5Cleft%5B%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cright%5D%20%3D%200

Divide away -%20%5Cdot%7By%7D:

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%3D%200%20

Therefore,

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

is equivalent to the Euler-Lagrange equation.

If L%20 does not explicitly depend on t, then %5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200 and%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200%20

becomes

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20%3D%200

So by integration

L%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%3D%20C

where C%20 is constant.


[Calculus] Beltrami Identity的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
宜川县| 精河县| 林芝县| 凤台县| 罗山县| 临沂市| 淅川县| 台州市| 高淳县| 海伦市| 德安县| 勃利县| 大同县| 黔西| 福贡县| 自治县| 开阳县| 屯昌县| 宣城市| 卢氏县| 富民县| 定南县| 崇文区| 定安县| 安康市| 紫云| 大同县| 嫩江县| 宁海县| 青铜峡市| 邵阳市| 文安县| 儋州市| 米林县| 黄山市| 修文县| 永福县| 麻阳| 兰溪市| 广州市| 西乡县|