五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

二維三角晶格能帶和態(tài)密度

2023-09-11 11:05 作者:syr56  | 我要投稿

二維三角晶格

圖1 二維三角晶格

緊束縛近似下的哈密頓量為

H%3D-t_1%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D-t_2%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E'%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D-t_3%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E''%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D%0A%5Ctag%7B1%7D

%3C%5Ctextbf%7Bij%7D%3E表示僅考慮電子與最近鄰(NN,每個(gè)原子有6個(gè)最近鄰原子)格點(diǎn)的躍遷,

最近鄰格點(diǎn)間距為a_0,%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B%5Ctextbf%7Ba%7D_%7B%5Ctextbf%7BNN%7D%7D%3D%5Cleft%5C%7B%20%5Carray%7B%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%20a_0%5Chat%7Bx%7D%20%5C%5C%20%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B(%5Cpm%20%5Cfrac%7B1%7D%7B2%7Da_0%5Chat%7Bx%7D%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0%5Chat%7By%7D)%7D%20%5Cright. ;

<\textbf{ij}>'AAA表示僅考慮電子與次近鄰(NNN,每個(gè)原子有6個(gè)次近鄰原子)格點(diǎn)的躍遷,

次近鄰格點(diǎn)間距為2a_0,%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B%5Ctextbf%7Ba%7D_%7B%5Ctextbf%7BNNN%7D%7D%3D%5Cleft%5C%7B%20%5Carray%7B%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%20%5Csqrt%7B3%7Da_0%5Chat%7By%7D%20%5C%5C%20%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B(%5Cpm%20%5Cfrac%7B3%7D%7B2%7Da_0%5Chat%7Bx%7D%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0%5Chat%7By%7D)%7D%20%5Cright.

<\textbf{ij}>''AAA表示僅考慮電子與第三近鄰(TNN,每個(gè)原子有6個(gè)第三近鄰原子)格點(diǎn)的躍遷,

第三近鄰格點(diǎn)間距為3a_0,%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B%5Ctextbf%7Ba%7D_%7B%5Ctextbf%7BTNN%7D%7D%3D%5Cleft%5C%7B%20%5Carray%7B%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%202a_0%5Chat%7Bx%7D%20%5C%5C%20%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B(%5Cpm%20a_0%5Chat%7Bx%7D%5Cpm%20%5Csqrt%7B3%7Da_0%5Chat%7By%7D)%7D%20%5Cright.。

通過傅里葉變換可以得到動(dòng)量空間中的哈密頓量為:

%5Cbegin%7Baligned%7D%20H(%5Ctextbf%7Bk%7D)%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D%5C%7B%26-2t_1%5B%5Ccos(a_0k_x)%2B%5Ccos(%5Cfrac%7B1%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B1%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%5D%20%20%20%5C%5C%20%26-2t_2%5B%5Ccos(a_0k_y)%2B%5Ccos(%5Cfrac%7B3%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B3%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%5D%20%20%5C%5C%20%26%5Cquad%20-t_3%5B%5Ccos(2a_0k_x)%2B%5Ccos(a_0k_x%2B%5Csqrt%7B3%7Da_0k_y)%2B%5Ccos(a_0k_x-%5Csqrt%7B3%7Da_0k_y)%5D%5C%7D%20%5Cend%7Baligned%7D%0A%5Ctag%7B2%7D

能帶函數(shù)為:

%5Cbegin%7Baligned%7D%20E_1(%5Ctextbf%7Bk%7D)%26%3D-2t_1%5B%5Ccos(a_0k_x)%2B%5Ccos(%5Cfrac%7B1%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B1%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%5D%20%20%5C%5C%20E_2(%5Ctextbf%7Bk%7D)%26%3D-2t_2%5B%5Ccos(%5Csqrt%7B3%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B3%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B3%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%5D%20%20%5C%5C%20E_3(%5Ctextbf%7Bk%7D)%26%3D-2t_3%5B%5Ccos(2a_0k_x)%2B%5Ccos(a_0k_x%2B%5Csqrt%7B3%7Da_0k_y)%2B%5Ccos(a_0k_x-%5Csqrt%7B3%7Da_0k_y)%5D%20%20%5C%5C%20%5C%5C%20%5Cmathrm%7BNN%7D%3A%26%5Cquad%20E(%5Ctextbf%7Bk%7D)%3DE_1(%5Ctextbf%7Bk%7D)%20%5C%5C%20%5Cmathrm%7BNNN%7D%3A%26%5Cquad%20E(%5Ctextbf%7Bk%7D)%3DE_1(%5Ctextbf%7Bk%7D)%2BE_2(%5Ctextbf%7Bk%7D)%20%5C%5C%20%5Cmathrm%7BTNN%7D%3A%26%20%5Cquad%20E(%5Ctextbf%7Bk%7D)%3DE_1(%5Ctextbf%7Bk%7D)%2BE_2(%5Ctextbf%7Bk%7D)%2BE_3(%5Ctextbf%7Bk%7D)%20%5Cend%7Baligned%7D%0A%5Ctag%7B3%7D

態(tài)密度為:

%5Crho(%5Comega)%3D-%5Cfrac%7B1%7D%7BN%5Cpi%7D%5Cmathrm%7BIm%7D%20%5Csum_%7Bn%2C%5Ctextbf%7Bk%7D%7D%5Cfrac%7B1%7D%7B%5Comega-E_n(%5Ctextbf%7Bk%7D)%2Bi%5CGamma%7D%3D-%5Cfrac%7B1%7D%7BN%5Cpi%7D%5Csum_%7Bn%2C%5Ctextbf%7Bk%7D%7D%5Cfrac%7B%5CGamma%7D%7B%5B%5Comega-E_n(%5Ctextbf%7Bk%7D)%5D%5E2%2B%5CGamma%5E2%7D%20%20%0A%5Ctag%7B4%7D%0A

三角晶格的實(shí)空間基矢可取為%5Cleft%5C%7B%5Cbegin%7Baligned%7D%5Ctextbf%7Ba%7D_1%26%3Da_0%5Chat%7Bx%7D%20%5C%5C%5Ctextbf%7Ba%7D_2%26%3D%5Cfrac%7B1%7D%7B2%7Da_0%5Chat%7Bx%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0%5Chat%7By%7D%5Cend%7Baligned%7D%20%5Cright.,由公式%5Ctext%7Ba%7D_%7Bi%7D%5Ccdot%20%5Ctextbf%7Bb%7D_j%3D2%5Cpi%5Cdelta_%7Bij%7D,可以求得動(dòng)量空間的基矢為%5Cleft%5C%7B%5Cbegin%7Baligned%7D%5Ctextbf%7Bb%7D_1%26%3D%5Cfrac%7B2%5Cpi%7D%7Ba_0%7D%5Chat%7Bk%7D_x-%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B3%7Da_0%7D%5Chat%7Bk%7D_y%20%5C%5C%5Ctextbf%7Bb%7D_2%26%3D%5Cfrac%7B4%5Cpi%7D%7B%5Csqrt%7B3%7Da_0%7D%5Chat%7Bk%7D_y%5Cend%7Baligned%7D%20%5Cright.,取a_0%3D1,

則有%5Cleft%5C%7B%5Cbegin%7Baligned%7D%5Ctextbf%7Bb%7D_1%26%3D2%5Cpi%5Chat%7Bk%7D_x-%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B3%7D%7D%5Chat%7Bk%7D_y%20%5C%5C%5Ctextbf%7Bb%7D_2%26%3D%5Cfrac%7B4%5Cpi%7D%7B%5Csqrt%7B3%7D%7D%5Chat%7Bk%7D_y%5Cend%7Baligned%7D%20%5Cright.,因此可以得到三角晶格的第一布里淵區(qū)為一個(gè)正六邊形,同時(shí)和費(fèi)米面一起繪制出來,其中t_1%3Dt_2%3Dt_3%3D1,如下圖

圖2 第一布里淵區(qū)和費(fèi)米面:NN(左),NNN(中),TNN(右)

三維能帶和能帶投影如下

圖3 三維能帶圖:NN(左),NNN(中),TNN(右)
圖4 三維能帶俯視圖:NN(左),NNN(中),TNN(右)

沿高對稱路徑(%5CGamma-K-M-%5CGamma)的能帶和態(tài)密度圖像如下

圖5 能帶(左)和態(tài)密度(右)

附:

【哈密頓量的傅里葉變換過程】

傅里葉變換公式,參見《固體理論》--李正中

%5Cbegin%7Baligned%7D%0A%20%20%20%20%09c_%7Bnl%7D%26%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bk%5Cin%20BZ%7Dc_%7Bnk%7De%5E%7Bi%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Bl%7D%7D%20%5Cqquad%20c_%7Bnk%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bl%7Dc_%7Bnl%7De%5E%7B-i%5Cvec%7Bk%7D%5Ccdot%20%5Cvec%7Bl%7D%7D%20%20%5C%5C%0A%20%20%20%20%09c_%7Bnl%7D%5E%7B%5Cdagger%7D%26%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bk%5Cin%20BZ%7Dc_%7Bnk%7D%5E%7B%5Cdagger%7De%5E%7B-i%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Bl%7D%7D%20%5Cqquad%20c_%7Bnk%7D%5E%7B%5Cdagger%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bl%7Dc_%7Bnl%7D%5E%7B%5Cdagger%7De%5E%7Bi%5Cvec%7Bk%7D%5Ccdot%20%5Cvec%7Bl%7D%7D%20%5C%5C%0A%20%20%20%20%09~%5C%5C%0A%20%20%20%20%09%5Cfrac%7B1%7D%7BN%7D%26%5Csum_%7Bl%7De%5E%7B%5Cpm%20i(%5Cvec%7Bk%7D-%5Cvec%7Bk%7D')%5Ccdot%20%5Cvec%7Bl%7D%7D%20%3D%20%5Cdelta_%7Bkk'%7D%3B%20%5Cqquad%20%5Cfrac%7B1%7D%7BN%7D%5Csum_%7Bk%5Cin%20BZ%7De%5E%7B%5Cpm%20i%5Cvec%7Bk%7D%5Ccdot%20(%5Cvec%7Bl%7D-%5Cvec%7Bl%7D')%7D%3D%5Cdelta_%7Bll'%7D%0A%20%20%20%20%09%5Cend%7Baligned%7D%0A%5Ctag%7B5%7D

最近鄰項(xiàng)的傅里葉變換

%5Cbegin%7Baligned%7D%0A%26-t_1%5Csum_%7B%3C%5Ctextbf%7Bij%7D%3E%7Dc_%7B%5Ctextbf%7Bi%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D%3D-%5Cfrac%7Bt_2%7D%7BN%7D%5Csum_%7B%3C%5Ctextbf%7Bij%7D%3E%2C%5Ctextbf%7Bkk%7D'%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7De%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bi%7D%7D%7D%20e%5E%7Bi%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%7D%0A%3D-%5Cfrac%7Bt_1%7D%7BN%7D%5Csum_%7B%5Ctextbf%7Bj%7D%2C%5Ctextbf%7Bkk%7D'%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7D%20e%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%2B%5Ctextbf%7Ba%7D_%7B%5Ctextbf%7BNN%7D%7D)%7D%20e%5E%7Bi%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%7D%20%20%5C%5C%0A%26%3D-%5Cfrac%7Bt_1%7D%7BN%7D%5Csum_%7B%5Ctextbf%7Bj%7D%2C%5Ctextbf%7Bkk%7D'%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7D%20e%5E%7Bi%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%7D%5Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%2Ba_0%5Chat%7Bx%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D-a_0%5Chat%7Bx%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%2B%5Cfrac%7B1%7D%7B2%7Da_0%5Chat%7Bx%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5Chat%7By%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D-%5Cfrac%7B1%7D%7B2%7Da_0%5Chat%7Bx%7D-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5Chat%7By%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D-%5Cfrac%7B1%7D%7B2%7Da_0%5Chat%7Bx%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5Chat%7By%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%2B%5Cfrac%7B1%7D%7B2%7Da_0%5Chat%7Bx%7D-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5Chat%7By%7D)%7D%5D%20%20%20%5C%5C%0A%26%3D-t_1%5Csum_%7B%5Ctextbf%7Bk%7D%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5Be%5E%7B-ia_0k_x%7D%2Be%5E%7Bia_0k_x%7D%2Be%5E%7B-i(%5Cfrac%7B1%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%7D%2Be%5E%7Bi(%5Cfrac%7B1%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Dk_y)%7D%2Be%5E%7Bi(%5Cfrac%7B1%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%7D%2Be%5E%7B-i(%5Cfrac%7B1%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%7D%5D%20%20%5C%5C%0A%26%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D-2t_1%5B%5Ccos(a_0k_x)%2B%5Ccos(%5Cfrac%7B1%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B1%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%5Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%0A%5Cend%7Baligned%7D%0A%5Ctag%7B6%7D

同理,可得到次鄰項(xiàng)和第三近鄰項(xiàng)為

-t_2%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E'%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D%0A%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D-2t_2%5B%5Ccos(a_0k_y)%2B%5Ccos(%5Cfrac%7B3%7D%7B2%7Da_0k_x%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%2B%5Ccos(%5Cfrac%7B3%7D%7B2%7Da_0k_x-%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Da_0k_y)%5Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%0A%5Ctag%7B7%7D

-t_3%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E''%7D%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D-2t_3%5B%5Ccos(2a_0k_x)%2B%5Ccos(a_0k_x%2B%5Csqrt%7B3%7Da_0k_y)%2B%5Ccos(a_0k_x-%5Csqrt%7B3%7Da_0k_y)%5Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%0A%5Ctag%7B8%7D

【代碼】

能帶、費(fèi)米面圖像繪制


態(tài)密度繪制

【英文縮寫】

? ?NN:Nearest Neighbor,最近鄰

NNN:Next?Nearest Neighbor,次近鄰

TNN:Third?Nearest Neighbor,第三近鄰

二維三角晶格能帶和態(tài)密度的評論 (共 條)

分享到微博請遵守國家法律
金昌市| 瓦房店市| 固原市| 瑞丽市| 佛教| 彰化市| 茂名市| 景谷| 共和县| 镇原县| 崇左市| 偃师市| 星子县| 锡林郭勒盟| 海安县| 大冶市| 会昌县| 五莲县| 呼伦贝尔市| 台北县| 南溪县| 徐州市| 昌乐县| 德州市| 时尚| 连州市| 鄂伦春自治旗| 延庆县| 资源县| 通河县| 元氏县| 天峨县| 迁安市| 中阳县| 普格县| 容城县| 福鼎市| 武清区| 安多县| 道孚县| 金华市|