R語言對(duì)回歸模型進(jìn)行協(xié)方差分析
原文鏈接:http://tecdat.cn/?p=9529
?
目錄
?
怎么做測(cè)試
協(xié)方差分析
擬合線的簡(jiǎn)單圖解
模型的p值和R平方
檢查模型的假設(shè)
具有三類和II型平方和的協(xié)方差示例分析
協(xié)方差分析
擬合線的簡(jiǎn)單圖解
組合模型的p值和R平方
檢查模型的假設(shè)
怎么做測(cè)試
具有兩個(gè)類別和II型平方和的協(xié)方差示例的分析
本示例使用II型平方和 。參數(shù)估計(jì)值在R中的計(jì)算方式不同,?
?
Data = read.table(textConnection(Input),header=TRUE)
?
?
?
plot(x ? = Data$Temp,
y ? = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")
legend('bottomright',
legend = levels(Data$Species),
col = 1:2,
cex = 1,
pch = 16)
?
?
?
協(xié)方差分析
?
Anova Table (Type II tests)
Sum Sq Df ?F value ? ?Pr(>F)
Temp ? ? ? ? 4376.1 ?1 1388.839 < 2.2e-16 ***
Species ? ? ? 598.0 ?1 ?189.789 9.907e-14 ***
Temp:Species ? ?4.3 ?1 ? ?1.357 ? ?0.2542
### Interaction is not significant, so the slope across groups
### is not different.
model.2 = lm (Pulse ~ Temp + Species,
data = Data)
library(car)
Anova(model.2, type="II")
Anova Table (Type II tests)
Sum Sq Df F value ? ?Pr(>F)
Temp ? ? ?4376.1 ?1 ?1371.4 < 2.2e-16 ***
Species ? ?598.0 ?1 ? 187.4 6.272e-14 ***
### The category variable (Species) is significant,
### so the intercepts among groups are different
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) ?-7.21091 ? ?2.55094 ?-2.827 ?0.00858 **
Temp ? ? ? ? ?3.60275 ? ?0.09729 ?37.032 ?< 2e-16 ***
Speciesniv ?-10.06529 ? ?0.73526 -13.689 6.27e-14 ***
### ? but the calculated results will be identical.
### The slope estimate is the same.
### The intercept for species 1 (ex) is (intercept).
### The intercept for species 2 (niv) is (intercept) + Speciesniv.
### This is determined from the contrast coding of the Species
### variable shown below, and the fact that Speciesniv is shown in
### coefficient table above.
niv
ex ? ?0
niv ? 1
?
?
擬合線的簡(jiǎn)單圖解
?
plot(x ? = Data$Temp,
y ? = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")
?

模型的p值和R平方
?
?
Multiple R-squared: ?0.9896, ?Adjusted R-squared: ?0.9888
F-statistic: ?1331 on 2 and 28 DF, ?p-value: < 2.2e-16
?
?
檢查模型的假設(shè)
?
?

?
線性模型中殘差的直方圖。這些殘差的分布應(yīng)近似正態(tài)。
?
?
?
?

殘差與預(yù)測(cè)值的關(guān)系圖。殘差應(yīng)無偏且均等。?
?
?
### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2)
?
具有三類和II型平方和的協(xié)方差示例分析
本示例使用II型平方和,并考慮具有三個(gè)組的情況。?
### --------------------------------------------------------------
### Analysis of covariance, hypothetical data
### --------------------------------------------------------------
Data = read.table(textConnection(Input),header=TRUE)
?
?
?
?
plot(x ? = Data$Temp,
y ? = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")
legend('bottomright',
legend = levels(Data$Species),
col = 1:3,
cex = 1,
pch = 16)
?
?
?
協(xié)方差分析
?
options(contrasts = c("contr.treatment", "contr.poly"))
### These are the default contrasts in R
Anova(model.1, type="II")
Sum Sq Df ? F value Pr(>F)
Temp ? ? ? ? 7026.0 ?1 2452.4187 <2e-16 ***
Species ? ? ?7835.7 ?2 1367.5377 <2e-16 ***
Temp:Species ? ?5.2 ?2 ? ?0.9126 0.4093
### Interaction is not significant, so the slope among groups
### is not different.
Anova(model.2, type="II")
Sum Sq Df F value ? ?Pr(>F)
Temp ? ? ?7026.0 ?1 ?2462.2 < 2.2e-16 ***
Species ? 7835.7 ?2 ?1373.0 < 2.2e-16 ***
Residuals ?125.6 44
### The category variable (Species) is significant,
### so the intercepts among groups are different
summary(model.2)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) ?-6.35729 ? ?1.90713 ?-3.333 ?0.00175 **
Temp ? ? ? ? ?3.56961 ? ?0.07194 ?49.621 ?< 2e-16 ***
Speciesfake ?19.81429 ? ?0.66333 ?29.871 ?< 2e-16 ***
Speciesniv ?-10.18571 ? ?0.66333 -15.355 ?< 2e-16 ***
### The slope estimate is the Temp coefficient.
### The intercept for species 1 (ex) is (intercept).
### The intercept for species 2 (fake) is (intercept) + Speciesfake.
### The intercept for species 3 (niv) is (intercept) + Speciesniv.
### This is determined from the contrast coding of the Species
### variable shown below.
contrasts(Data$Species)
fake niv
ex ? ? ?0 ? 0
fake ? ?1 ? 0
niv ? ? 0 ? 1
?
擬合線的簡(jiǎn)單圖解
?
?

?
組合模型的p值和R平方
?
?
Multiple R-squared: ?0.9919, ?Adjusted R-squared: ?0.9913
F-statistic: ?1791 on 3 and 44 DF, ?p-value: < 2.2e-16
?
?
?
檢查模型的假設(shè)
hist(residuals(model.2),
col="darkgray")
?
?

線性模型中殘差的直方圖。這些殘差的分布應(yīng)近似正態(tài)。
?
?
plot(fitted(model.2),
residuals(model.2))
?

?
殘差與預(yù)測(cè)值的關(guān)系圖。殘差應(yīng)無偏且均等。?
?
?
### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2)
?

拓端研究室?拓端數(shù)據(jù)?編輯
拓端(http://tecdat.cn )創(chuàng)立于2016年,自成立以來,就定位為提供專業(yè)的統(tǒng)計(jì)分析與數(shù)據(jù)挖掘服務(wù)的提供商,致力于充分挖掘數(shù)據(jù)的價(jià)值,為客戶定制個(gè)性化的數(shù)據(jù)方案與報(bào)告等。
歡迎關(guān)注微信公眾號(hào):拓端數(shù)據(jù)部落、拓端數(shù)據(jù)。? ? ? ? ?