五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【直播預(yù)告】SFFAI 136 通信強(qiáng)化學(xué)習(xí)專題

2022-02-11 16:14 作者:人工智能前沿講習(xí)  | 我要投稿

SFFAI論壇已開放注冊

詳情點(diǎn)擊查看:https://bbs.sffai.com/d/312

注:騰訊會議直播地址會分享在交流群內(nèi)


講者介紹

于會涵,北京郵電大學(xué)智能感知與計算教研中心研究生,主要研究方向?yàn)樯疃葟?qiáng)化學(xué)習(xí)在通信網(wǎng)絡(luò)中的應(yīng)用。目前已在WCNC會議上發(fā)表論文。


分享題目

Deep Reinforcement Learning Based Beamforming for Throughput Maximization in Ultra-Dense Networks


分享摘要

Ultra-dense network (UDN) is a promising technology for 5G and beyond communication systems to meet the requirements of explosive data traffic. However, the dense distribution of wireless terminals potentially leads to severe interference and deteriorate network performance. To address this issue, beamforming is widely used to coordinate the interference in UDNs and improve receive gains by controlling the phase of multiple antennas. In this paper, we propose a multi-agent deep reinforcement learning (DRL) based beamforming algorithm to achieve more dynamic and fast beamforming adjustment. In the proposed algorithm, the agents inside beamforming controllers are distributively trained while exchanging partial channel state information (CSI) for better optimizing beamforming vectors to achieve maximized throughputs in UDNs. The evaluation results demonstrate that the proposed algorithm significantly improves the computation efficiency, as well as achieves the highest network throughput compared to several baselines.


分享亮點(diǎn)

1. We proposed a muti-agent DRL-based algorithm to improve the beamforming computation efficiency drastically. Agents train their deep Q-networks (DQNs) and execute the actions distributedly. Each agent only needs to exchange a part of the global CSI during the entire training phase.

2.?To improve the computation efficiency, discrete actions are used instead of continuous actions. In addition, we divided the beamformer into two parts, namely, the transmit power and the beam direction in order to minimize the interference.

3.?We designed a specific reward function to make sure the transmission rates of primary users are larger than a given threshold, and avoid to generate too much interference to secondary users.?


直播時間

2022年2月13日(周日)20:00—21:00 線上直播

關(guān)注微信公眾號:人工智能前沿講習(xí),對話框回復(fù)“SFFAI136”,獲取入群二維碼



【直播預(yù)告】SFFAI 136 通信強(qiáng)化學(xué)習(xí)專題的評論 (共 條)

分享到微博請遵守國家法律
衡水市| 闻喜县| 婺源县| 尚志市| 元谋县| 西华县| 禄劝| 临猗县| 六枝特区| 龙井市| 安义县| 凤山县| 广东省| 文昌市| 从江县| 开远市| 留坝县| 昆明市| 长宁区| 新闻| 酉阳| 延安市| 封开县| 资溪县| 五常市| 红原县| 唐河县| 三都| 周口市| 射阳县| 宁夏| 虹口区| 贵南县| 锦屏县| 彭阳县| 阿拉善盟| 河东区| 江油市| 汉川市| 嵩明县| 山丹县|