五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Integral of Inverse Tangent

2021-10-07 09:49 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

This problem is a good exercise on integration by parts and integration by substitution.
Compute the integral

%20%5Cint%20%5Carctan(x)%20dx

【Solution】

Step 1:Integration by Parts

Let u%20%3D%20%5Carctan(x) and %20dv%20%3D%20(1)dx.

Then du%20%3D%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20dx%20 and v%20%3D%20x%20.

By the integration by parts

%5Cint%20udv%20%3D%20uv%20-%20%5Cint%20vdu

we get

%5Cint%20%5Carctan(x)%20dx%20%20%3D%20%5Carctan(x)%5Ccdot%20x%20-%20%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx


Step 2:Integration by Substitution

Now focus on the integral %5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20. Use the substitution method for this integral.

Let u%20%3D%201%20%2Bx%5E2, then du%20%3D%202x%20dx.

Therefore,

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7Bu%7D%20du%20

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C


Consequently, the complete integral is

%20%5Cint%20%5Carctan(x)%20dx%20%3D%20x%5Carctan(x)%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C%20%2B%20C

[Calculus] Integral of Inverse Tangent的評論 (共 條)

分享到微博請遵守國家法律
察雅县| 吴江市| 禹州市| 应城市| 改则县| 平阳县| 新泰市| 宝鸡市| 赤壁市| 巴楚县| 南岸区| 安徽省| 教育| 崇州市| 锦屏县| 安义县| 朔州市| 修文县| 苏州市| 罗平县| 射洪县| 德保县| 尚义县| 湖南省| 佛山市| 乌鲁木齐县| 诸城市| 泽普县| 凤山市| 桐庐县| 江津市| 台南市| 四子王旗| 岳阳市| 水城县| 电白县| 柞水县| 涟水县| 滨州市| 南溪县| 北川|