五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Reinforcement Learning_Code_Value Function Approximation

2023-04-08 11:30 作者:別叫我小紅  | 我要投稿

Following results and code are the implementation of value function approximation, including Monte Carlo, Sarsa and deep Q-learning, in?Gymnasium's?Cart Pole environment.


RESULTS:

Visualizations of (i)?changes?in?scores, losses and epsilons, and (ii) animation results.

1. Monte Carlo

Fig. 1.1. Changes in scores, losses and epsilons.
Fig.?1.2. Animation results.

2. Sarsa

Original Sarsa, which is exactly what is used here, may has same need as Q-learning, which refers to a resample buffer.?

Because in original implementation of? Sarsa and Q-learning, q-value is updated once an action is taken, which will lead the algorithm to extreme instability.?

So, to get better results, we need to update q-value after a number of steps, which means introducing experience replay.


Fig. 2.1. Changes in scores, losses and epsilons.
Fig. 2.2. Animation results.

3. Deep Q-learning

Here we use experience replay and fixed Q-targets.

Fig. 3.1. Changes in scores, losses and epsilons.
Fig. 3.2. Animation results.


CODE:

NetWork.py


MCAgent.py


SarsaAgent.py


ReplayBuffer.py


DQNAgent.py


train_and_test.py


The above code?are mainly based on rainbow-is-all-you-need[1] and extend?solutions to Monte Carlo and?Sarsa.


Reference

[1] https://github.com/Curt-Park/rainbow-is-all-you-need


Reinforcement Learning_Code_Value Function Approximation的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
精河县| 珠海市| 梓潼县| 金寨县| 历史| 银川市| 祁东县| 民丰县| 桑植县| 尖扎县| 观塘区| 绩溪县| 亳州市| 瓮安县| 万全县| 满城县| 顺义区| 兴安盟| 鲁甸县| 铁岭县| 新乡市| 通州市| 宁化县| 大同市| 保德县| 永年县| 霸州市| 吉安市| 阿坝县| 通渭县| 宁陵县| 阜康市| 德安县| 日喀则市| 永宁县| 栖霞市| 玛多县| 台北县| 汾阳市| 竹山县| 张家口市|