五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

范德蒙德行列式的推導(dǎo)

2023-06-03 22:01 作者:~Sakuno醬  | 我要投稿

命題

證明?%5Cbegin%7Bvmatrix%7D%0A1%20%26%20x_1%20%26%20x_1%5E2%20%26%20..%20%26x_1%5E%7Bn-1%7D%20%5C%5C%0A1%20%26%20x_2%20%26%20x_2%5E2%20%26%20..%20%26%20x_2%5E%7Bn-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A1%20%26%20x_n%20%26%20x_n%5E2%20%26%20..%20%26%20x_n%5E%7Bn-1%7D%20%0A%5Cend%7Bvmatrix%7D 等于?%5Cprod_%7B1%20%5Cle%20i%20%3C%20j%20%5Cle%20n%7D%20(x_j-x_i)

范德蒙德行列式的特點(diǎn)就是第k列的次數(shù)是k-1次,每一列是齊次的

我們的思路是作初等行變換,同時(shí)希望改變后的每一列都是齊次的。


對(duì) n 使用歸納法

假設(shè)?n%3Dk 時(shí)成立

考慮n%3Dk%2B1

%5Cbegin%7Bvmatrix%7D%0A1%20%26%20x_1%20%26%20x_1%5E2%20%26%20..%20%26%20x_1%5E%7Bk-1%7D%20%260%20%5C%5C%0A1%20%26%20x_2%20%26%20x_2%5E2%20%26%20..%20%26%20x_2%5E%7Bk-1%7D%20%26%20x_2%5E%7Bk%7D%20-x_1x_2%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A1%20%26%20x_%7Bk%2B1%7D%20%26%20x_%7Bk%2B1%7D%5E2%20%26%20..%20%26%20x_k%5E%7Bk-1%7D%20%26%20x_%7Bk%2B1%7D%5E%7Bk%7D%20-%20x_1x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

作初等列變換, 把第k列乘以?-x_1 加到k%2B1

然后是第k-1列乘以-x_1加到k列,繼續(xù)重復(fù)k次,得到

%5Cbegin%7Bvmatrix%7D%0A1%20%26%200%20%26%200%20%26%20..%20%26%200%20%260%20%5C%5C%0A1%20%26%20x_2-x_1%20%26%20x_2%5E2%20-x_1x_2%26%20..%20%26%20x_2%5E%7Bk-1%7D-x_1x_2%5E%7Bk-2%7D%20%26%20x_2%5E%7Bk%7D%20-x_1x_2%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A1%20%26%20x_%7Bk%2B1%7D%20-x_1%26%20x_%7Bk%2B1%7D%5E2%20-x_%7B1%7Dx_%7Bk%2B1%7D%26%20..%20%26%20x_k%5E%7Bk-1%7D%20-x_1x_k%5E%7Bk-2%7D%26%20x_%7Bk%2B1%7D%5E%7Bk%7D%20-%20x_1x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

根據(jù)行列式的性質(zhì)按第一行展開(kāi)得到

%5Cbegin%7Bvmatrix%7D%0A%20x_2-x_1%20%26%20x_2%5E2%20-x_1x_2%26%20..%20%26%20x_2%5E%7Bk-1%7D-x_1x_2%5E%7Bk-2%7D%20%26%20x_2%5E%7Bk%7D%20-x_1x_2%5E%7Bk-1%7D%20%5C%5C%0A%20x_3-x_1%20%26%20x_3%5E2%20-x_1x_3%26%20..%20%26%20x_3%5E%7Bk-1%7D-x_1x_3%5E%7Bk-2%7D%20%26%20x_3%5E%7Bk%7D%20-x_1x_3%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A%20x_%7Bk%2B1%7D%20-x_1%26%20x_%7Bk%2B1%7D%5E2%20-x_%7B1%7Dx_%7Bk%2B1%7D%26%20..%20%26%20x_k%5E%7Bk-1%7D%20-x_1x_k%5E%7Bk-2%7D%26%20x_%7Bk%2B1%7D%5E%7Bk%7D%20-%20x_1x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

每一行可以提取公因子?x_2-x_1,x_3-x_1?等

(x_2-x_1)(x_3-x_1)..(x_%7Bk%2B1%7D-x_1)%5Cbegin%7Bvmatrix%7D%0A%201%20%26%20x_2%26%20..%20%26%20x_2%5E%7Bk-2%7D%20%26%20x_2%5E%7Bk-1%7D%20%5C%5C%0A%201%20%26%20x_3%20%26%20..%20%26%20x_3%5E%7Bk-2%7D%20%26%20x_3%5E%7Bk-1%7D%20%5C%5C%0A..%20%26%20..%20%26%20..%20%26%20..%20%26%20..%20%5C%5C%0A%201%26%20x_%7Bk%2B1%7D%26%20..%20%26%20x_k%5E%7Bk-2%7D%26%20x_%7Bk%7D%5E%7Bk-1%7D%0A%5Cend%7Bvmatrix%7D

注意到右邊的行列式是k階的

%3D(x_2-x_1)(x_3-x_1)..(x_%7Bk%2B1%7D-x_1)%5Cprod_%7B2%5Cle%20i%3Cj%5Cle%20k%2B1%7D(x_j-x_i)


%3D%5Cprod_%7B1%20%5Cle%20i%20%3Cj%20%5Cle%20k%2B1%7D(x_j-x_i)



范德蒙德行列式的推導(dǎo)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
建水县| 松江区| 通山县| 东方市| 大田县| 达孜县| 海口市| 汉沽区| 永顺县| 石泉县| 肥西县| 南昌市| 汪清县| 手游| 三河市| 霸州市| 涡阳县| 吉水县| 榕江县| 高雄县| 九龙坡区| 无为县| 环江| 宜城市| 宜兴市| 贞丰县| 沿河| 马关县| 津市市| 遵化市| 黎平县| 华池县| 鸡泽县| 绥棱县| 金塔县| 项城市| 噶尔县| 本溪市| 黑龙江省| 盖州市| 赤水市|