五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Electromagnetism] Cycloid Motion with EM Fields

2021-09-01 16:05 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Consider a uniform magnetic field directed in the x-direction, and a uniform electric field directed in the z-direction. A particle with positive charge q and mass m is released from the origin, and initially at rest. Determine the trajectory of the particle over time.


Hint

%5Cboldsymbol%7BE%7D%20%3D%0A%5Cbegin%7Bpmatrix%7D%200%20%5C%5C%200%20%5C%5C%20E%20%5Cend%7Bpmatrix%7D%5C%20%2C%20%5Cquad%20%5Cboldsymbol%7BB%7D%20%3D%0A%5Cbegin%7Bpmatrix%7D%20B%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bpmatrix%7D%5C


【Solution】

The magnetic force is calculated using the cross-product

%5Cboldsymbol%7Bv%20%5Ctimes%20B%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%20%5Cboldsymbol%7Bi%7D%26%5Cboldsymbol%7Bj%7D%26%5Cboldsymbol%7Bk%7D%20%5C%5C%0A%200%20%26%20%5Cdot%20y%20%26%20%5Cdot%20z%20%5C%5C%0A%20B%20%26%200%20%26%200%20%5Cend%7Bvmatrix%7D%5C%20%3D%0A%5Cbegin%7Bpmatrix%7D%200%20%5C%5C%20B%20%5Cdot%20z%20%5C%5C%20-B%20%5Cdot%20y%20%5Cend%7Bpmatrix%7D%5C%20


Subsequently, the Lorentz force, %5Cboldsymbol%7BF%7D%20%3D%20q%20%5Cleft(%5Cboldsymbol%7BE%7D%20%2B%20%5Cboldsymbol%7Bv%20%5Ctimes%20B%7D%20%5Cright), in vector form is

%5Cbegin%7Bpmatrix%7D%20m%20%5Cddot%20x%20%5C%5C%20m%20%5Cddot%20y%20%5C%5C%20m%20%5Cddot%20z%20%5Cend%7Bpmatrix%7D%5C%20%3D%0A%5Cbegin%7Bpmatrix%7D%200%20%5C%5C%20qB%20%5Cdot%20z%20%5C%5C%20qE%20-%20qB%20%5Cdot%20y%20%5Cend%7Bpmatrix%7D%5C


Divide the mass of the particle on both sides of the equation and let %5Comega%20%3D%20%5Cfrac%7BqB%7D%7Bm%7D and %5Cgamma%20%3D%20%5Cfrac%7BqE%7D%7Bm%7D, then

%5Cbegin%7Bpmatrix%7D%20%5Cddot%20x%20%5C%5C%20%5Cddot%20y%20%5C%5C%20%5Cddot%20z%20%5Cend%7Bpmatrix%7D%5C%20%3D%0A%5Cbegin%7Bpmatrix%7D%200%20%5C%5C%20%5Comega%20%5Cdot%20z%20%5C%5C%20%5Cgamma%20-%20%5Comega%20%5Cdot%20y%20%5Cend%7Bpmatrix%7D%5C%20

To solve this system of coupled differential equations, let %5Cddot%20x%20%3D%20%5Cdot%20v_x%2C%20%5Cquad%20%5Cddot%20y%20%3D%20%5Cdot%20v_y%2C%20%5Cquad%20%5Cddot%20z%20%3D%20%5Cdot%20v_z.

Thus,


%5Cbegin%7Bpmatrix%7D%20%5Cdot%20v_x%20%5C%5C%20%5Cdot%20v_y%20%5C%5C%20%5Cdot%20v_z%20%5Cend%7Bpmatrix%7D%5C%20%3D%0A%5Cbegin%7Bpmatrix%7D%200%20%5C%5C%20%5Comega%20v_z%20%5C%5C%20%5Cgamma%20-%20%5Comega%20v_y%20%5Cend%7Bpmatrix%7D%5C%20

Substitute the bottom equation into the derivative of the middle equation to obtain

%5Cddot%20v_y%20%2B%20%7B%5Comega%7D%5E%7B2%7D%20v_y%20%3D%20%5Comega%20%5Cgamma

The above differential equation is non-homogeneous, thus the solution is the sum of the homogeneous solution and particular solution.

(1) Homogeneous solution

%5Cddot%20v_h%20%2B%20%7B%5Comega%7D%5E%7B2%7D%20v_h%20%3D%200

The characteristic equation is %20%7B%5Clambda%7D%5E%7B2%7D%20%2B%20%7B%5Comega%7D%5E%7B2%7D%20%3D%200%20, where %5Clambda%20%3D%20%5Cpm%20%5Comega%20i.

The solution is therefore

v_h%20(t)%20%3D%20A%7Be%7D%5E%7Bi%20%5Comega%20t%7D%20%2B%20B%7Be%7D%5E%7B-i%20%5Comega%20t%7D

or

v_h%20(t)%20%3D%20C%5Csin%7B(%5Comega%20t)%7D%20%2B%20D%5Ccos%7B(%5Comega%20t)%7D


(2) Particular solution

Since %5Comega%20%5Cgamma%20 is constant, if v_p%20%3D%20%5Comega%20%5Cgamma, then %5Cdot%20v_p%20%3D%20%5Cddot%20v_p%20%3D%200. Then the differential equation?

%5Cddot%20v_p%20%2B%20%7B%5Comega%7D%5E%7B2%7D%20v_p%20%3D%20%5Comega%20%5Cgamma

reduces to

0%20%2B%20%7B%5Comega%7D%5E%7B2%7D%20v_p%20%3D%20%5Comega%20%5Cgamma


Hence v_p%20%3D%20%5Cfrac%7B%5Cgamma%7D%7B%5Comega%7D.

Consequently, the solution of the differential equation is

v_y%20(t)%20%3D%20C%5Csin%7B(%5Comega%20t)%7D%20%2B%20D%5Ccos%7B(%5Comega%20t)%7D%20%2B%20%5Cfrac%7B%5Cgamma%7D%7B%5Comega%7D

Since the particle is initially released at rest,

v_y%20(t)%20%3D%20%5Cfrac%7B%5Cgamma%7D%7B%5Comega%7D%5Cleft(1%20-%20%5Ccos%7B(%5Comega%20t)%7D%5Cright)


v_z%20(t)%20%3D%20%5Cfrac%7B%5Cgamma%7D%7B%5Comega%7D%5Csin%7B(%5Comega%20t)%7D

To obtain the trajectory,


%5Cint%20v_y%20dt%20%3D%20%5Cfrac%7B%5Cgamma%7D%7B%5Comega%7Dt%20-%20%5Cfrac%7B%5Cgamma%7D%7B%7B%5Comega%7D%5E%7B2%7D%7D%5Csin%7B(%5Comega%20t)%7D%20%2B%20y_0

%5Cint%20v_z%20dt%20%3D%20-%20%5Cfrac%7B%5Cgamma%7D%7B%7B%5Comega%7D%5E%7B2%7D%7D%5Ccos%7B(%5Comega%20t)%7D%20%2B%20z_0


Since the particle is initially released at the origin,


y(t)%20%3D%20%5Cfrac%7B%5Cgamma%7D%7B%5Comega%7Dt%20-%20%5Cfrac%7B%5Cgamma%7D%7B%7B%5Comega%7D%5E%7B2%7D%7D%5Csin%7B(%5Comega%20t)%7D%20

z(t)%20%3D%20%5Cfrac%7B%5Cgamma%7D%7B%7B%5Comega%7D%5E%7B2%7D%7D%20%5Cleft(1%20-%20%5Ccos%7B(%5Comega%20t)%7D%5Cright)

Replacing %5Cgamma and %5Comega with its original quantities yields


y(t)%20%3D%20%5Cfrac%7BE%7D%7BB%7D%5Cleft(t%20-%20%5Cfrac%7Bm%7D%7BqB%7D%5Csin%7B%5Cleft(%5Cfrac%7BqB%7D%7Bm%7D%20t%5Cright)%7D%5Cright)

z(t)%20%3D%20%5Cfrac%7BEm%7D%7Bq%7BB%7D%5E%7B2%7D%7D%5Cleft(1%20-%20%5Ccos%7B%5Cleft(%5Cfrac%7BqB%7D%7Bm%7D%20t%20%5Cright)%7D%5Cright)


The solution of displacement presents a cycloid trajectory!


[Electromagnetism] Cycloid Motion with EM Fields的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
鄢陵县| 田东县| 张掖市| 云安县| 肃宁县| 通城县| 将乐县| 华阴市| 江达县| 安宁市| 纳雍县| 新泰市| 固阳县| 措勤县| 塘沽区| 惠水县| 花垣县| 永济市| 通江县| 含山县| 大化| 上杭县| 大港区| 达拉特旗| 礼泉县| 寿宁县| 于都县| 和政县| 桐乡市| 富源县| 商都县| 金堂县| 栾城县| 浮梁县| 嵊州市| 米易县| 麦盖提县| 瓦房店市| 南城县| 金坛市| 莒南县|