排列組合“分組分配問題”始終不懂?講給你本質(zhì)!【高中數(shù)學(xué)】

“※”表示一數(shù)口述很重要的或截圖中沒有出現(xiàn)的或表意不明的內(nèi)容。
更多筆記請(qǐng)前往【高中數(shù)學(xué)基礎(chǔ)與解法全集】查看
【題目實(shí)例輔助理解】




※:總結(jié)
①分組分配問題一共分為兩步,首先要分組,分完組以后再將分出來的組進(jìn)行分配。
1°首先分組,使用組合進(jìn)行計(jì)算,也就是分堆問題。
分堆問題:先把沒有重復(fù)堆數(shù)的堆單獨(dú)列出來,由于是無序的,為了便于計(jì)算,假設(shè)為有序的,所以這幾個(gè)堆之間使用組合相乘是重復(fù)的(因?yàn)橹凹僭O(shè)了有順序),需要刨去排列,才變?yōu)檎_答案
→(便于計(jì)算)有序 ÷ 全排列 = 無序

簡(jiǎn)單來說,單拎出不重復(fù)的,剩下重復(fù)的重復(fù)n遍,先使用組合,再總的一并除去Ann
2°然后分配,使用排列
分配問題:分組分好了以后,看一共有多少組,這個(gè)時(shí)候使用排列,而且是全排列,分了n組,最后就乘上Ann
標(biāo)簽: