五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

一元二、三、四次方程求根公式、判別式、韋達(dá)定理、已知方程根求作方程

2023-03-17 04:14 作者:超級安安喵  | 我要投稿

下面是我整理的一元二、三、四次方程求根公式、判別式、韋達(dá)定理、已知方程根求作方程(韋達(dá)定理逆定理)內(nèi)容。

一元二次方程

ax%5E2%2Bbx%2Bc%3D0(a%E2%89%A00%2Ca%2Cb%2Cc%E2%88%88%5Cmathbb%20R)

求根公式:

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%2C%5C%5Cx_2%3D%5Cdfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D.%5Cend%7Bmatrix%7D

判別式:

%CE%94%3Db%5E2-4ac.

當(dāng)%CE%94%3E0時,方程有兩個不等實根.

當(dāng)%CE%94%3D0時,方程有一個二重實根

x_1%3Dx_2%3D-%5Cfrac%20b%7B2a%7D.

當(dāng)%CE%94%3C0時,方程有一對共軛虛根.

韋達(dá)定理:

%5Cbegin%7Bmatrix%7Dx_1%2Bx_2%3D-%5Cdfrac%20ba%2C%5C%5Cx_1x_2%3D%5Cdfrac%20ca.%5Cend%7Bmatrix%7D

x_1%2Cx_2為兩根的一元二次方程:

x%5E2-(x_1%2Bx_2)x%2Bx_1x_2%3D0.

一元三次方程

ax%5E3%2Bbx%5E2%2Bcx%2Bd%3D0(a%E2%89%A00%2Ca%2Cb%2Cc%2Cd%E2%88%88%5Cmathbb%20R)

求根公式:

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b%2B%5Csqrt%5B3%5D%7B%5Cdfrac%7B-2b%5E3%2B9abc-27a%5E2d%2B3a%5Csqrt%7B-3b%5E2c%5E2%2B12ac%5E3%2B12b%5E3d-54abcd%2B81a%5E2d%5E2%7D%7D2%7D%2B%5Csqrt%5B3%5D%7B%5Cdfrac%7B-2b%5E3%2B9abc-27a%5E2d-3a%5Csqrt%7B-3b%5E2c%5E2%2B12ac%5E3%2B12b%5E3d-54abcd%2B81a%5E2d%5E2%7D%7D2%7D%7D%7B3a%7D%2C%5C%5Cx_2%3D%5Cdfrac%7B-b%2B%5Cdfrac%7B-1%2B%5Csqrt3i%7D2%5Csqrt%5B3%5D%7B%5Cdfrac%7B-2b%5E3%2B9abc-27a%5E2d%2B3a%5Csqrt%7B-3b%5E2c%5E2%2B12ac%5E3%2B12b%5E3d-54abcd%2B81a%5E2d%5E2%7D%7D2%7D%2B%5Cdfrac%7B-1-%5Csqrt3i%7D2%5Csqrt%5B3%5D%7B%5Cdfrac%7B-2b%5E3%2B9abc-27a%5E2d-3a%5Csqrt%7B-3b%5E2c%5E2%2B12ac%5E3%2B12b%5E3d-54abcd%2B81a%5E2d%5E2%7D%7D2%7D%7D%7B3a%7D%2C%5C%5Cx_3%3D%5Cdfrac%7B-b%2B%5Cdfrac%7B-1-%5Csqrt3i%7D2%5Csqrt%5B3%5D%7B%5Cdfrac%7B-2b%5E3%2B9abc-27a%5E2d%2B3a%5Csqrt%7B-3b%5E2c%5E2%2B12ac%5E3%2B12b%5E3d-54abcd%2B81a%5E2d%5E2%7D%7D2%7D%2B%5Cdfrac%7B-1%2B%5Csqrt3i%7D2%5Csqrt%5B3%5D%7B%5Cdfrac%7B-2b%5E3%2B9abc-27a%5E2d-3a%5Csqrt%7B-3b%5E2c%5E2%2B12ac%5E3%2B12b%5E3d-54abcd%2B81a%5E2d%5E2%7D%7D2%7D%7D%7B3a%7D.%5Cend%7Bmatrix%7D

判別式:

%CE%94%3D-b%5E2c%5E2%2B4ac%5E3%2B4b%5E3d-18abcd%2B27a%5E2d%5E2.%0A%0A

當(dāng)%CE%94%3E0時,方程有一個實根和一對共軛虛根.

當(dāng)%CE%94%3D0%2Cb%5E2-3ac%E2%89%A00時,方程有一對二重實根

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b-2%5Cmathrm%7Bsgn%7D(2b%5E3-9abc%2B27a%5E2d)%5Csqrt%7Bb%5E2-3ac%7D%7D%7B3a%7D%2C%5C%5Cx_2%3D%5Cdfrac%7B-b%2B%5Cmathrm%7Bsgn%7D(2b%5E3-9abc%2B27a%5E2d)%5Csqrt%7Bb%5E2-3ac%7D%7D%7B3a%7D.%5Cend%7Bmatrix%7D

當(dāng)%CE%94%3Db%5E2-3ac%3D0時,方程有一個三重實根

x_1%3Dx_2%3Dx_3%3D-%5Cfrac%20b%7B3a%7D.

當(dāng)%CE%94%3C0時,方程有三個不等實根.

韋達(dá)定理:

%5Cbegin%7Bmatrix%7Dx_1%2Bx_2%2Bx_3%3D-%5Cdfrac%20ba%2C%5C%5Cx_1x_2%2Bx_1x_3%2Bx_2x_3%3D%5Cdfrac%20ca%2C%5C%5Cx_1x_2x_3%3D-%5Cdfrac%20da.%5Cend%7Bmatrix%7D

x_1%2Cx_2%2Cx_3為三根的一元三次方程:

x%5E3-(x_1%2Bx_2%2Bx_3)x%5E2%2B(x_1x_2%2Bx_1x_3%2Bx_2x_3)x-x_1x_2x_3%3D0.

一元四次方程

ax%5E4%2Bbx%5E3%2Bcx%5E2%2Bdx%2Be%3D0(a%E2%89%A00%2Ca%2Cb%2Cc%2Cd%2Ce%E2%88%88%5Cmathbb%20R)

求根公式:

k%5E3-ck%5E2%2B(bd-4ae)k-ad%5E2-b%5E2e%2B4ace%3D0%2C

當(dāng)b%5E3-4abc%2B8a%5E2d%3E0時,

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%2B4ak%7D%2B%5Csqrt%7B2b%5E2-4ac-4ak-2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_2%3D%5Cdfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%2B4ak%7D-%5Csqrt%7B2b%5E2-4ac-4ak-2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_3%3D%5Cdfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%2B4ak%7D%2B%5Csqrt%7B2b%5E2-4ac-4ak%2B2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_4%3D%5Cdfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%2B4ak%7D-%5Csqrt%7B2b%5E2-4ac-4ak%2B2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D.%5Cend%7Bmatrix%7D

當(dāng)b%5E3-4abc%2B8a%5E2d%3D0時,

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b%2B%5Csqrt%7B3b%5E2-8ac%2B2%5Csqrt%7B3b%5E4%2B16a%5E2c%5E2-16ab%5E2c%2B16a%5E2bd-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_2%3D%5Cdfrac%7B-b-%5Csqrt%7B3b%5E2-8ac%2B2%5Csqrt%7B3b%5E4%2B16a%5E2c%5E2-16ab%5E2c%2B16a%5E2bd-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_3%3D%5Cdfrac%7B-b%2B%5Csqrt%7B3b%5E2-8ac-2%5Csqrt%7B3b%5E4%2B16a%5E2c%5E2-16ab%5E2c%2B16a%5E2bd-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_4%3D%5Cdfrac%7B-b-%5Csqrt%7B3b%5E2-8ac-2%5Csqrt%7B3b%5E4%2B16a%5E2c%5E2-16ab%5E2c%2B16a%5E2bd-64a%5E3e%7D%7D%7D%7B4a%7D.%5Cend%7Bmatrix%7D

當(dāng)b%5E3-4abc%2B8a%5E2d%3C0時,

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%2B4ak%7D%2B%5Csqrt%7B2b%5E2-4ac-4ak%2B2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_2%3D%5Cdfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%2B4ak%7D-%5Csqrt%7B2b%5E2-4ac-4ak%2B2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_3%3D%5Cdfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%2B4ak%7D%2B%5Csqrt%7B2b%5E2-4ac-4ak-2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D%2C%5C%5Cx_4%3D%5Cdfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%2B4ak%7D-%5Csqrt%7B2b%5E2-4ac-4ak-2%5Csqrt%7Bb%5E4-4ab%5E2c-4ab%5E2k%2B16a%5E2bd%2B16a%5E2k%5E2-64a%5E3e%7D%7D%7D%7B4a%7D.%5Cend%7Bmatrix%7D

判別式:

%CE%94%3D-b%5E2c%5E2d%5E2%2B4ac%5E3d%5E2%2B4b%5E3d%5E3%2B4b%5E2c%5E3e%2B6ab%5E2d%5E2e-16ac%5E4e-18abcd%5E3-18b%5E3cde%2B27a%5E2d%5E4%2B27b%5E4e%5E2%2B80abc%5E2de%2B128a%5E2c%5E2e%5E2-144a%5E2cd%5E2e-144ab%5E2ce%5E2%2B192a%5E2bde%5E2-256a%5E3e%5E3.

當(dāng)%CE%94%3E0時,方程有兩個不等實根和一對共軛虛根.

當(dāng)%CE%94%3D0%2Cc%5E2-3bd%2B12ae%E2%89%A00時,方程有一對二重實根;若b%5E2c%5E2-3b%5E3d-4ac%5E3-6ab%5E2e%2B14abcd%2B16a%5E2ce-18a%5E2d%5E2%3E0,則其余兩根為不等實根;若b%5E2c%5E2-3b%5E3d-4ac%5E3-6ab%5E2e%2B14abcd%2B16a%5E2ce-18a%5E2d%5E2%3C0,則其余兩根為共軛虛根

%5Cbegin%7Bmatrix%7Dx_%7B1%2C2%7D%3D%5Cdfrac%7B-b-%5Cmathrm%7Bsgn%7D(b%5E3-4abc%2B8a%5E2d)%5Csqrt%7B%5Cdfrac%7B3b%5E2-8ac%2B8a%5Cmathrm%7Bsgn%7D(2c%5E3-9bcd%2B27ad%5E2%2B27b%5E2e-72ace)%5Csqrt%7Bc%5E2-3bd%2B12ae%7D%7D3%7D%5Cpm2%5Csqrt%7B%5Cdfrac%7B3b%5E2-8ac-4a%5Cmathrm%7Bsgn%7D(2c%5E3-9bcd%2B27ad%5E2%2B27b%5E2e-72ace)%5Csqrt%7Bc%5E2-3bd%2B12ae%7D%7D3%7D%7D%7B4a%7D%2C%5C%5Cx_3%3Dx_4%3D%5Cdfrac%7B-b%2B%5Cmathrm%7Bsgn%7D(b%5E3-4abc%2B8a%5E2d)%5Csqrt%7B%5Cdfrac%7B3b%5E2-8ac%2B8a%5Cmathrm%7Bsgn%7D(2c%5E3-9bcd%2B27ad%5E2%2B27b%5E2e-72ace)%5Csqrt%7Bc%5E2-3bd%2B12ae%7D%7D3%7D%7D%7B4a%7D.%5Cend%7Bmatrix%7D

當(dāng)%CE%94%3Dc%5E2-3bd%2B12ae%3D0%2C3b%5E2-8ac%E2%89%A00時,方程有四個實根,其中有一個三重根

%5Cbegin%7Bmatrix%7Dx_1%3D%5Cdfrac%7B-b%2B3%5Csqrt%5B3%5D%7Bb%5E3-4abc%2B8a%5E2d%7D%7D%7B4a%7D%2C%5C%5Cx_2%3Dx_3%3Dx_4%3D%5Cdfrac%7B-b-%5Csqrt%5B3%5D%7Bb%5E3-4abc%2B8a%5E2d%7D%7D%7B4a%7D.%5Cend%7Bmatrix%7D

當(dāng)%CE%94%3D3b%5E4%2B16a%5E2c%5E2-16ab%5E2c%2B16a%5E2bd-64a%5E3e%3D0%2C3b%5E2-8ac%E2%89%A00時,方程有兩對二重根;若3b%5E2-8ac%3E0,根為實數(shù);若3b%5E2-8ac%3C0,根為虛數(shù)

x_%7B1%2C2%7D%3Dx_%7B3%2C4%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%7B3b%5E2-8ac%7D%7D%7B4a%7D.

當(dāng)%CE%94%3Dc%5E2-3bd%2B12ae%3D3b%5E2-8ac%3D0時,方程有一個四重實根

x_1%3Dx_2%3Dx_3%3Dx_4%3D-%5Cfrac%20b%7B4a%7D.

當(dāng)%CE%94%3C0時,若3b%5E2-8ac%3E0%2C3b%5E4%2B16a%5E2c%5E2-16ab%5E2c%2B16a%5E2bd-64a%5E3e%3E0,則方程有四個不等實根;否則方程有兩對不等共軛虛根.

韋達(dá)定理:

%5Cbegin%7Bmatrix%7Dx_1%2Bx_2%2Bx_3%2Bx_4%3D-%5Cdfrac%20ba%2C%5C%5Cx_1x_2%2Bx_1x_3%2Bx_1x_4%2Bx_2x_3%2Bx_2x_4%2Bx_3x_4%3D%5Cdfrac%20ca%2C%5C%5Cx_1x_2x_3%2Bx_1x_2x_4%2Bx_1x_3x_4%2Bx_2x_3x_4%3D-%5Cdfrac%20da%2C%5C%5Cx_1x_2x_3x_4%3D%5Cdfrac%20ea.%5Cend%7Bmatrix%7D

x_1%2Cx_2%2Cx_3%2Cx_4%E4%B8%BA四根的一元四次方程:

x%5E4-(x_1%2Bx_2%2Bx_3%2Bx_4)x%5E3%2B(x_1x_2%2Bx_1x_3%2Bx_1x_4%2Bx_2x_3%2Bx_2x_4%2Bx_3x_4)x%5E2-(x_1x_2x_3%2Bx_1x_2x_4%2Bx_1x_3x_4%2Bx_2x_3x_4)x%2Bx_1x_2x_3x_4%3D0.

一元二、三、四次方程求根公式、判別式、韋達(dá)定理、已知方程根求作方程的評論 (共 條)

分享到微博請遵守國家法律
九龙县| 永新县| 沙湾县| 简阳市| 木兰县| 盈江县| 四川省| 盘锦市| 潜江市| 吉安市| 兴和县| 招远市| 会宁县| 建昌县| 韶关市| 扶风县| 灵宝市| 伊宁市| 桦甸市| 如皋市| 威宁| 政和县| 南皮县| 河津市| 车致| 淮阳县| 张家川| 沂水县| 蒲江县| 溧水县| 利津县| 甘孜| 黔西| 吉木乃县| 乐业县| 河池市| 大洼县| 南澳县| 崇信县| 铁力市| 平凉市|