五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Number Theory] Objects of Unknown Number

2021-09-04 19:45 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The following problem is from the Sunzi Suanjing (孫子算經(jīng)), a text written by an obscure mathematician with the surname Sun (name unknown) sometime around the 3rd to 5th centuries AD.

Suppose we have an unknown number of objects. When counted in threes,?2?are left over, when counted in fives,?3?are left over, and when counted in sevens,?2?are left over. How many objects are there?

[Assume the lowest positive integer solution]


【Solution】

This problem is a system of indeterminate equations with infinitely many solutions. According to the problem, we get


%5Cbegin%7Balign%7D%0A%20N%20%26%5Cequiv%202%20%5Cpmod%7B3%7D%20%5C%5C%0A%20N%20%26%5Cequiv%203%20%5Cpmod%7B5%7D%20%5C%5C%0A%20N%20%26%5Cequiv%202%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D

Calculate the product of the moduli

M%20%3D%203%20%5Ctimes%205%20%5Ctimes%207%20%3D%20105

The solution of the Chinese remainder theorem prescribes that

N%20%3D%20%5Cleft%5Br_1%20M_1%20s_1%20%2B%20r_2%20M_2%20s_2%20%2B%20r_3%20M_3%20s_3%20%5Cright%5D%20%5Cpmod%20M

For this problem

M_1%20%3D%20%5Cfrac%7B105%7D%7B3%7D%20%3D%2035%2C%20%5Cquad%20M_2%20%3D%20%5Cfrac%7B105%7D%7B5%7D%20%3D%2021%2C%20%5Cquad%20M_3%20%3D%20%5Cfrac%7B105%7D%7B7%7D%20%3D%2015


N%20%3D%20%5Cleft%5B2(35)s_1%20%2B%203(21)s_2%20%2B%202(15)s_3%20%5Cright%5D%20%5Cpmod%7B105%7D

where

%5Cbegin%7Balign%7D%0A%2035s_1%20%26%5Cequiv%201%20%5Cpmod%7B3%7D%20%5C%5C%0A%2021s_2%20%26%5Cequiv%201%20%5Cpmod%7B5%7D%20%5C%5C%0A%2015s_3%20%26%5Cequiv%201%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D


and?s_1%2C%20s_2%2C%20s_3 represent the modular inverses of each respective remainder.? The modular inverses can be solved systematically using Qin Jiushao's (大衍求一術(shù)) ; however, the numbers involved in this problem are small enough to be obtained by guessing and checking.


%5Cbegin%7Balign%7D%0A%2035(2)%20%26%5Cequiv%201%20%5Cpmod%7B3%7D%20%5C%5C%0A%2021(1)%20%26%5Cequiv%201%20%5Cpmod%7B5%7D%20%5C%5C%0A%2015(1)%20%26%5Cequiv%201%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D

Final Calculation

N%20%3D%20%5Cleft%5B2(35)(2)%20%2B%203(21)(1)%20%2B%202(15)(1)%20%5Cright%5D%20%5Cpmod%7B105%7D

N%20%5Cequiv%20%5Cleft%5B140%20%2B%2063%20%2B%2030%20%5Cright%5D%20%5Cpmod%7B105%7D

N%20%3D%20233%20%5Cpmod%7B105%7D

Here, 233 is a solution, but this is not the lowest positive integer solution. The lowest positive integer solution is


233%20-%202(105)%20%3D%2023

So there are 23 objects.


[Number Theory] Objects of Unknown Number的評論 (共 條)

分享到微博請遵守國家法律
神农架林区| 正安县| 兴宁市| 富裕县| 荥阳市| 延津县| 临湘市| 长宁县| 韶关市| 扶沟县| 分宜县| 淮安市| 汾阳市| 滦南县| 离岛区| 榕江县| 长沙县| 石河子市| 金堂县| 云霄县| 灯塔市| 丰原市| 四川省| 南投县| 洪洞县| 昭觉县| 浙江省| 志丹县| 萍乡市| 务川| 修武县| 黔东| 禹城市| 敦煌市| 建德市| 连城县| 咸阳市| 牙克石市| 武鸣县| 广河县| 五原县|