五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

一維非齊次波動方程

2021-10-20 00:46 作者:偏謬Lyx  | 我要投稿

考慮一維的弦振動,

%5Cleft(%20%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20t%5E2%7D%20-%20a%5E2%20%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x%5E2%7D%20%5Cright)%20u(x%2Ct)%20%3D%20f(x%2Ct)

初始條件為,

%5Cbegin%7Bcases%7D%0Au(x%2C0)%3D%5Cphi(x)%5C%5C%0A%5Cpartial_%7Bt%7Du(x%2C0)%3D%5Cpsi(x)%0A%5Cend%7Bcases%7D

假設(shè)邊界條件為兩端固定,u(0%2Ct)%20%3D%20u(L%2Ct)%20%3D%200。在此類邊界條件下,空間基函數(shù)為?%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright),其中?%5Clambda_n%3Dn%5Cpi%2FL。將?u(x%2Ct) 和?f(x%2Ct)?分別在空間上展開成傅里葉級數(shù),

%5Cbegin%7Balign%7D%0A%09u(x%2Ct)%20%3D%20%5Csum_n%20T_n(t)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5C%5C%0A%09f(x%2Ct)%20%3D%20%5Csum_n%20f_n(t)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%0A%5Cend%7Balign%7D

其中展開系數(shù)為,

%5Cbegin%7Balign%7D%0A%09T_n(t)%20%3D%20%5Cfrac%7B2%7D%7BL%7D%20%5Cint_0%5EL%20u(x%2Ct)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%09f_n(t)%20%3D%20%5Cfrac%7B2%7D%7BL%7D%20%5Cint_0%5EL%20f(x%2Ct)%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5C%2C%5Cmathrm%7Bd%7Dx%0A%5Cend%7Balign%7D

代入初始條件,將展開系數(shù)記為,

%5Cbegin%7Balign%7D%0A%20%20%20%20%20%20%20%20A_n%7B%5Cequiv%7DT_n(0)%3D%5Cfrac2L%5Cint_0%5EL%5Cphi(x)%5Csin(%5Clambda_%7Bn%7Dx)%5C%2C%5Cmathrm%7Bd%7Dx%5Cnonumber%5C%5C%0A%25%0A%20%20%20%20%20%20%20%20B_n%7B%5Cequiv%7DT_n'(0)%3D%5Cfrac2L%5Cint_0%5EL%5Cpsi(x)%5Csin(%5Clambda_%7Bn%7Dx)%5C%2C%5Cmathrm%7Bd%7Dx%5Cnonumber%0A%5Cend%7Balign%7D

將級數(shù)形式代回原方程可得,

%5Csum_n%20%5Cleft%5B%20T_n''(t)%20%2B%20%5Clambda_n%5E2%20a%5E2%20T_n(t)%20-%20f_n(t)%20%5Cright%5D%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%3D%200

要滿足以上方程,需要對任意的?n?都滿足,

T_n''(t)%2B%5Clambda_n%5E2%7Ba%5E2%7DT_n(t)%3Df_n(t)

于是原定解問題就轉(zhuǎn)化為了二階非齊次常微分方程的定解問題,

%5Cbegin%7Bcases%7D%0AT''(t)%20%2B%20%5Clambda%5E2%20a%5E2%20T(t)%20%3D%20f(t)%20%5C%5C%0AT(0)%20%3D%20A%20%5C%5C%0AT'(0)%20%3D%20B%0A%5Cend%7Bcases%7D

利用拉普拉斯變換求解。假設(shè)變換后的像函數(shù)為,

%5Cbegin%7Balign%7D%0A%09%5Cmathcal%7BL%7D%20%5BT(t)%5D%20%26%3D%20%5Cint_0%5E%7B%5Cinfty%7D%20T(t)%20%5C%2C%5Cmathrm%7Be%7D%5E%7B-st%7D%20%5C%2C%5Cmathrm%7Bd%7Dt%20%3D%20G(s)%20%5C%5C%0A%09%5Cmathcal%7BL%7D%20%5Bf(t)%5D%20%26%3D%20%5Cint_0%5E%7B%5Cinfty%7D%20f(t)%20%5C%2C%5Cmathrm%7Be%7D%5E%7B-st%7D%20%5C%2C%5Cmathrm%7Bd%7Dt%20%3D%20F(s)%0A%5Cend%7Balign%7D

由拉普拉斯變換的基本性質(zhì)可得,

%5Cbegin%7Balign%7D%0A%09%5Cmathcal%7BL%7D%20%5BT'(t)%5D%20%26%3D%20s%20G(s)%20-%20A%20%5C%5C%0A%09%5Cmathcal%7BL%7D%20%5BT''(t)%5D%20%26%3D%20s%5E2%20G(s)%20-%20sA%20-B%0A%5Cend%7Balign%7D

變換后的方程為,

s%5E2%20G(s)%20-%20sA-B%20%2B%20%5Clambda%5E2%20a%5E2%20G(s)%20%3D%20F(s)

得到相空間中的解,

G(s)%20%3D%20%5Cfrac%7BsA%20%2B%20B%20%2B%20F(s)%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D

對其求逆變換,

%5Cbegin%7Bsplit%7D%0A%09T(t)%20%3D%26%5C%2C%20A%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Bs%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D%20%5Cright%5D%20%2B%20%5Cfrac%7BB%7D%7B%5Clambda%20a%7D%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B%5Clambda%20a%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D%20%5Cright%5D%20%5C%5C%0A%26%2B%20%5Cfrac%7B1%7D%7B%5Clambda%20a%7D%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B%5Clambda%20a%7D%7Bs%5E2%20%2B%20%5Clambda%5E2%20a%5E2%7D%20F(s)%20%5Cright%5D%20%5C%5C%0A%5Cend%7Bsplit%7D

前兩項為常用的三角函數(shù),最后一項為兩個函數(shù)的卷積,

%5Cbegin%7Bsplit%7D%0A%09T(t)%20%3D%26%5C%2C%20A%20%5Ccos%20%5Cleft(%20%5Clambda%20at%20%5Cright)%20%2B%20%5Cfrac%7BB%7D%7B%5Clambda%20a%7D%20%5Csin%20%5Cleft(%20%5Clambda%20at%20%5Cright)%20%5C%5C%0A%26%2B%20%5Cfrac%7B1%7D%7B%5Clambda%20a%7D%20%5Cint_0%5Et%20%5Csin%20%5Cleft(%20%5Clambda%20a%20%5Ctau%20%5Cright)%20f(t-%5Ctau)%20%5C%2C%5Cmathrm%7Bd%7D%5Ctau%0A%5Cend%7Bsplit%7D

代回到?u(x%2Ct)?的級數(shù)形式,可得到最終的通解,

%5Cbegin%7Bsplit%7D%0Au(x%2Ct)%20%3D%20%5Csum_n%20%5Csin%20%5Cleft(%20%5Clambda_n%20x%20%5Cright)%20%5Cleft%5B%20A_n%20%5Ccos%20%5Cleft(%20%5Clambda_n%20at%20%5Cright)%20%2B%20%5Cfrac%7BB_n%7D%7B%5Clambda_n%20a%7D%20%5Csin%20%5Cleft(%20%5Clambda_n%20at%20%5Cright)%20%5Cright.%20%5C%5C%0A%5Cleft.%20%2B%20%5Cfrac%7B1%7D%7B%5Clambda_n%20a%7D%20%5Cint_0%5Et%20%5Csin%20%5Cleft(%20%5Clambda_n%20a%20%5Ctau%20%5Cright)%20f_n(t-%5Ctau)%20%5C%2C%5Cmathrm%7Bd%7D%5Ctau%20%5Cright%5D%0A%5Cend%7Bsplit%7D


一維非齊次波動方程的評論 (共 條)

分享到微博請遵守國家法律
荥经县| 陕西省| 宁阳县| 朝阳市| 高台县| 马尔康县| 镇雄县| 车致| 西贡区| 汽车| 改则县| 泾阳县| 阿图什市| 祁连县| 定日县| 封丘县| 莱州市| 云南省| 小金县| 永川市| 饶平县| 曲阜市| 芜湖县| 和顺县| 易门县| 高密市| 盐边县| 灵璧县| 肥西县| 咸宁市| 塘沽区| 钦州市| 交口县| 仁寿县| 萝北县| 白朗县| 长武县| 高邮市| 柳江县| 伊通| 长兴县|