五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Sum of Squares

2021-07-10 18:34 作者:AoiSTZ23  | 我要投稿

?By: Tao Steven Zheng (鄭濤)

【Problem】

In his work "On Spirals", Archimedes (287 – 212 BC) derived the formula for calculating the sum of consecutive perfect squares. Figure 1 shows the geometric representation of the sum

1%5E2%2B2%5E2%2B3%5E2%2B4%5E2%2B5%5E2

used by Archimedes. He was able to derive the formula

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Explain Archimedes’ proof of the sum of consecutive perfect squares using modern algebraic notation.

Figure 1

【Solution】

?Figure 1 represents the equation

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B(1%2B2%2B3%2B%E2%8B%AF%2Bn)

Since

1%2B2%2B3%2B%E2%8B%AF%2Bn%3D%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

it follows that

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn(n%2B1)(n%2B%5Cfrac%7B1%7D%7B2%7D)

1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Consequently,

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D


[Series] Sum of Squares的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
团风县| 普格县| 镇康县| 湾仔区| 靖边县| 尼勒克县| 神木县| 江西省| 玛纳斯县| 阿坝| 甘孜| 滦平县| 无极县| 格尔木市| 莱阳市| 于都县| 揭阳市| 克什克腾旗| 嵩明县| 嘉禾县| 唐海县| 甘德县| 包头市| 武川县| 买车| 海盐县| 新野县| 平湖市| 曲麻莱县| 建水县| 沙河市| 麻栗坡县| 竹溪县| 肥西县| 饶平县| 苏尼特左旗| 江川县| 平阴县| 同仁县| 兰州市| 金门县|