五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【機(jī)器人基礎(chǔ)】Introduction to Robotics@UCB

2022-04-26 14:15 作者:Kaiser小弟  | 我要投稿

在看的小伙伴不要被前面幾個(gè)視頻勸退,P4以后的聲音和視頻都很好,而且教授改用了手推定理的方式,講的很好。

Chapter2: rigid body motion

2.2 rotational motions in R3

property of a rotation matrix: orthnornal

rotation matrxi in invitable since the rank is 3 (full rank)

Since orthormal, R-1=RT

(detR)^2=detR*detRT => 1 => detR = +-1

SO(3): othonormal matrix with deg 3 -> a group

group: g1*g2 in G (closure under multiplication)

exists a identity element

all elements have an inverse

Examples of group

R3->addition operation: is a group

0 vector: identity

inverse: negative

(0,1) mod 2 addition

identity: 0

R, multiplication

inverse: 0 does not have -> not group

Property: SO(3) is a group with matrix multiplication

R1*R2 is in SO(3)

identity: I

inverse: RT

Configuration and rigid transformation:


property 2: Rab preserces distances and cross product

R(vXw)=RvXRw

Euler's formula

euler formular for SO(3)

every rotation is a exponential of something

skew symmetric matrices: odd dimention...

9 numbers: only 3 indenpendent parameters


figure what are the 3 parameters

omega_hat is so(3),

hat: R3->so(3), i.e., omega-> omage_hat

exp: so(3)->SO(3), omega_hat*theta->exp(omega_hat*theta)

exponential of a skew symmetric matrix is always a rotational matrix

Rodrigues' formula

product of two skew sym matrix, is sym



【機(jī)器人基礎(chǔ)】Introduction to Robotics@UCB的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
开原市| 平利县| 乐亭县| 房山区| 通辽市| 福鼎市| 丹凤县| 威宁| 汾西县| 肇源县| 四子王旗| 板桥市| 宽城| 永昌县| 凯里市| 格尔木市| 颍上县| 博野县| 无棣县| 娄烦县| 延津县| 双城市| 东兰县| 德兴市| 梅河口市| 黎川县| 成都市| 襄汾县| 凤冈县| 五峰| 九龙城区| 昌江| 农安县| 东山县| 沈阳市| 金平| 平果县| 大冶市| 临安市| 全南县| 固原市|