五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

[Calculus] Logistic Growth

2021-11-12 11:04 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The logistic growth model is a population model that incorporates Malthusian-like growth in the early stage and in-species competition for resources at the later stage. This model includes a growth rate r and carrying capacity K. The differential equation of this growth model is

%5Cfrac%7BdN%7D%7Bdt%7D%20%3D%20rN%5Cleft(1%20-%20%5Cfrac%7BN%7D%7BK%7D%20%5Cright)%20

with the initial condition N(0)%20%3D%20N_0%20.

Part 1: What are the steady-state solutions?
Part 2: Solve the differential equation with the aforementioned initial condition.

【Solution】

Part 1

Steady-state solutions occur when %5Cfrac%7BdN%7D%7Bdt%7D%20%3D%200 for all time t. For the logistic growth model,

0%20%3D%20rN%5Cleft(1%20-%20%5Cfrac%7BN%7D%7BK%7D%20%5Cright)

Solving for N shows that the steady-state solutions occur at N%20%3D0 and N%20%3D%20K%20.

Part 2

Rewrite the differential equation %5Cfrac%7BdN%7D%7Bdt%7D%20%3D%20rN%5Cleft(1%20-%20%5Cfrac%7BN%7D%7BK%7D%20%5Cright) as %5Cfrac%7BdN%7D%7Bdt%7D%20%3D%20rN%5Cleft(%5Cfrac%7BK%20-%20N%7D%7BK%7D%20%5Cright)%20.

Integrate both sides

%5Cint%20%5Cfrac%7BK%7D%7BN(K%20-%20N)%7D%20dN%20%3D%20%5Cint%20r%20dt

by partial fractions using the fact

%5Cfrac%7BK%7D%7BN(K%20-%20N)%7D%20%3D%20%5Cfrac%7B1%7D%7BN%7D%20%2B%20%5Cfrac%7B1%7D%7BK-N%7D

Consequently,

%5Cint%20%5Cfrac%7B1%7D%7BN%7D%20%2B%20%5Cfrac%7B1%7D%7BK-N%7D%20dN%20%3D%20%5Cint%20r%20dt%20

%5Cint%20%5Cleft(-%5Cfrac%7B1%7D%7BN%7D%20-%20%5Cfrac%7B1%7D%7BK-N%7D%20%5Cright)%20dN%20%3D%20-%5Cint%20r%20dt%20

-%5Cln%7CN%7C%20%2B%20%5Cln%7CK-N%7C%20%3D%20-rt%20%2B%20C

%5Cln%5Cleft%7C%5Cfrac%7BK-N%7D%7BN%7D%5Cright%7C%20%3D%20-rt%20%2B%20C%20

%5Cln%5Cleft%7C%5Cfrac%7BK-N%7D%7BN%7D%5Cright%7C%20%3D%20-rt%20%2B%20C

%20%5Cfrac%7BK-N%7D%7BN%7D%20%3D%20%7Be%7D%5E%7B-rt%20%2B%20C%7D%20

%5Cfrac%7BK-N%7D%7BN%7D%20%3D%20%7Be%7D%5E%7B-rt%7D%7Be%7D%5E%7BC%7D%20

Let A%20%3D%20%7Be%7D%5E%7BC%7D, then

%5Cfrac%7BK%7D%7BN%7D%20-%201%20%3D%20A%7Be%7D%5E%7B-rt%7D

%5Cfrac%7BK%7D%7BN%7D%20%3D%201%20%2B%20A%7Be%7D%5E%7B-rt%7D%20%20

%20N%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20A%7Be%7D%5E%7B-rt%7D%7D%20%20


Solve the initial-value problem:

N(0)%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20A%7Be%7D%5E%7B-r(0)%7D%7D%20%20

N_0%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20A%7D

%20A%20%3D%20%5Cfrac%7BK%7D%7BN_0%7D%20-1

Consequently, the solution of the logistic growth model is

N(t)%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20%5Cleft(%5Cfrac%7BK%7D%7BN_0%7D%20-%201%20%5Cright)%7Be%7D%5E%7B-rt%7D%7D


[Calculus] Logistic Growth的評論 (共 條)

分享到微博請遵守國家法律
贡嘎县| 江陵县| 库尔勒市| 类乌齐县| 邹平县| 微山县| 西宁市| 南投县| 库车县| 锦屏县| 老河口市| 郓城县| 扬州市| 饶河县| 吴旗县| 巴中市| 通许县| 泗洪县| 云林县| 东兰县| 抚远县| 伽师县| 石门县| 开原市| 灵武市| 凤山县| 建水县| 蚌埠市| 庆城县| 都昌县| 镇巴县| 昌江| 宜宾市| 高淳县| 南溪县| 晋城| 双牌县| 囊谦县| 五大连池市| 武山县| 临海市|