五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

解方程迭代算法的有效性證明

2022-04-05 21:49 作者:我愛計(jì)算機(jī)科學(xué)  | 我要投稿



的解,因此也是

的解。

有上述過程可以看出,迭代法的產(chǎn)生很簡單,只要把一個(gè)多項(xiàng)式改變一下形式就可以,然后讓左邊的x成為xk+1,右邊的則是xk就可以了。例如:

將方程改寫為下列五種等價(jià)形式,?并建立相應(yīng)的迭代公式:

圖1

接下來要做的就是這種方法的可行性和有效性??尚行允侵高@種方法最終會(huì)收斂,有效性是指當(dāng)k趨于無窮大的時(shí)候,xk是f(x)的解,即xk最終會(huì)滿足




要證明上述定理,線給出下圖:

圖2

圖2中的直線就是y=x,曲線就是





圖3

圖3的證明目的,就是為了證明xk會(huì)由圖2的兩邊最終靠近直線與曲線的交點(diǎn)

這里的映內(nèi)性是指



L越小,收斂速度越快。是否收斂,就是看


是否小于1。

最后分析圖1中各表達(dá)式的收斂性。

上面整個(gè)證明的思路可以概括為:

1:有多項(xiàng)式得出表達(dá)式


.從而建立迭代關(guān)系。

2:由


小于1,并根據(jù)微分中值定理,證明這種迭代是可行的,有效的,即迭代的結(jié)果會(huì)趨近于


這個(gè)方程的解。


解方程迭代算法的有效性證明的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
小金县| 咸阳市| 湘乡市| 天长市| 大名县| 盐边县| 犍为县| 遵义县| 大英县| 龙川县| 华坪县| 兴业县| 渑池县| 江山市| 交城县| 台东市| 鄂尔多斯市| 保康县| 金溪县| 调兵山市| 扎鲁特旗| 黄大仙区| 眉山市| 施甸县| 黄陵县| 延边| 凉山| 皮山县| 温泉县| 景谷| 金昌市| 岳普湖县| 崇左市| 益阳市| 鄂尔多斯市| 项城市| 仙游县| 承德市| 丰台区| 韩城市| 盖州市|