五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Taylor's series

2021-08-09 20:44 作者:哼M(jìn)M  | 我要投稿

泰勒無窮級(jí)數(shù)與麥克勞倫無窮級(jí)數(shù)的關(guān)系: 泰勒公式存在一個(gè)a點(diǎn),當(dāng)這個(gè)小點(diǎn)等于0的時(shí)候,泰勒無窮級(jí)數(shù)就是麥克勞倫級(jí)數(shù)了.

Taylor series of the function ?f ?at a (or about a or centered at a).This case arises frequently enough that it is given the special name Maclaurin series.

2021.8.8

傅里葉級(jí)數(shù)(fourier's series)

如何理解傅里葉級(jí)數(shù)?

????1.回憶傅里葉的公式f(x)%3Da_%7B0%7D%20%2B%5Csum_%7Bn%3D1%7D%5EF%5Ba_%7Bn%7Dcos(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7D%20x)%2B%20%20b_%7Bn%7Dsin(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7D)%20%5D%2C那個(gè)F 表示無窮.

2.那公式里還有a0,an 和 bn啊!a_%7Bo%7D%20%3D%20%5Cfrac%7B1%7D%7B2l%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(x)dx%2C

????????????????????????????????????????????a_%7Bn%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(x)cos(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7Dx%20)dx%2C

????????????????????????????????????????????b_%7Bn%7D%20%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(x)sin(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7Dx%20)dx

????????????????????????????????????????????4%3Af(-x)%3D%5Cvert%20_%7Bf(z)%2Ceven%7D%5E%7Bf(-x)%2Codd%7D%20

3.聯(lián)系下sin和cos的積分性質(zhì),在對(duì)稱的區(qū)間內(nèi)積分,呵呵就有偶函數(shù)(even)是Double,奇函數(shù)(odd)是0,發(fā)現(xiàn)了一個(gè)問題:f(x)%5Csin%20(x)%20%E5%92%8C%5Ccos%20(x)%20的乘積is odd or even, we should be certainly make sure. I have the conclusion :odd *even = odd, other is even.

4.那么,接下來就用到奇偶測(cè)試了,公式在上面.利用奇偶測(cè)試,確定在傅里葉級(jí)數(shù)中存在sin還是cos,當(dāng)然還有l 就是你選取的范圍,題目里一般叫周期(一般有%5Cpi%20), function expansion is difficult .

2021.8.9

????


Taylor's series的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
武隆县| 射洪县| 多伦县| 凤阳县| 商丘市| 杂多县| 安龙县| 大荔县| 隆昌县| 吐鲁番市| 周口市| 安阳市| 武隆县| 清远市| 德江县| 纳雍县| 郑州市| 东海县| 文安县| 北宁市| 兴化市| 麟游县| 武功县| 曲麻莱县| 吴忠市| 上蔡县| 长阳| 安岳县| 翁源县| 太谷县| 武城县| 庆阳市| 青浦区| 舞钢市| 三台县| 驻马店市| 峡江县| 监利县| 越西县| 永寿县| 靖西县|