五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

有限元分析:非線性分析求解算法——牛頓迭代法

2021-10-12 14:35 作者:生物力學(xué)分析研究員  | 我要投稿

結(jié)構(gòu)有限元分析中,涉及到彈塑性材料、結(jié)構(gòu)大變形大轉(zhuǎn)動以及接觸問題都是非線性問題,需要使用非線性工況進行求解。

Abaqus、OptiStruct及Ansys Mechanical等有限元求解器多使用牛頓迭代法,即Newton-Raphson迭代法,來求解非線性問題。

很多結(jié)構(gòu)非線性培訓(xùn)資料都會用下面這張圖來講解牛頓迭代法,但說實話,筆者第一次看到這張圖時,只知道是逐步逼近準(zhǔn)確解,知其然但不知其所以然,不知道怎么來的。


牛頓迭代法有以下三種變形:常規(guī)牛頓迭代法,修正的牛頓迭代法以及牛頓下山法。有限元求解器一般會根據(jù)實際情況自動選擇最合適的那種,幫助文檔中一般不會講得很細(xì)。

下面請聽我一一道來。

1、常規(guī)牛頓迭代法

若不存在加速度和阻尼,有限元算法可以簡化為求解平衡方程?

?,其中剛度矩陣K和載荷F為已知條件,通常需要計算剛度矩陣K的逆矩陣從而求解位移矩陣X。

常規(guī)牛頓迭代法如下圖所示,注意曲線L(u)并不是已知的,而是逐步求解出來的,下面詳細(xì)說明求解過程。

常規(guī)牛頓迭代法

假設(shè)分析步總載荷為100N,非線性算法中一般會分多次加載,比如分5次加載每次增加20N,5次加載過程稱為5個增量步;每次加載時需要多次迭代才會達到平衡狀態(tài),稱為迭代步,迭代時使用的算法就是牛頓迭代法。

假設(shè)在第n個迭代步時,需要加載大小為 f 的力,下面開始迭代,迭代順序依次為:A>B>C>D>E。


常規(guī)牛頓迭代法的優(yōu)點是收斂速度快。

2、修正的牛頓迭代法

常規(guī)牛頓迭代法每次迭代都是求解新的剛度矩陣K以及K的逆矩陣,計算量較大,如果剛度矩陣總是使用初始的?

?,并且保持不變,則可以不求解求逆矩陣,大大減少了計算量,這就是修正的牛頓迭代法,示意圖如下。

3、牛頓下山法

常規(guī)牛頓迭代法要求初始值必須在準(zhǔn)確值附近才會收斂,初始值不合適可能會導(dǎo)致結(jié)果不收斂。

通過引入下山因子,保證了牛頓迭代法的收斂性。

因此牛頓下山法收斂速度快,一定收斂,而且對初始值要求不高,相比常規(guī)牛頓迭代法更穩(wěn)健。



有限元分析:非線性分析求解算法——牛頓迭代法的評論 (共 條)

分享到微博請遵守國家法律
临沂市| 桓仁| 筠连县| 固原市| 阿克苏市| 东兴市| 泸西县| 蒙山县| 新绛县| 东海县| 海安县| 微山县| 巍山| 安阳县| 察隅县| 绩溪县| 天峨县| 当雄县| 绥中县| 南安市| 江达县| 平湖市| 武穴市| 嘉鱼县| 扬州市| 奎屯市| 铜梁县| 南安市| 若尔盖县| 鄄城县| 滨海县| 巨野县| 天祝| 社旗县| 图木舒克市| 奉贤区| 长顺县| 南京市| 古田县| 秦安县| 黑山县|