五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Vectors] Cross Product

2021-10-23 21:08 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Consider two vectors %5Cboldsymbol%7BA%7D%20%3D%20%5Clangle%201%2C2%2C3%5Crangle%20 and %5Cboldsymbol%7BB%7D%20%3D%20%5Clangle%202%2C0%2C-1%5Crangle%20.

Part 1: Calculate the cross product %5Cboldsymbol%7BA%20%5Ctimes%20B%7D.

Part 2: Determine the norm of %5Cboldsymbol%7BA%20%5Ctimes%20B%7D. Then calculate angle between %5Cboldsymbol%7BA%7D%20 and %5Cboldsymbol%7BB%7D%20.

Part 3: Show that the cross-product %20%5Cboldsymbol%7BA%20%5Ctimes%20B%7D is orthogonal to %5Cboldsymbol%7BA%7D%20 and %5Cboldsymbol%7BB%7D%20.


【Solution】

Part 1

%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%20%3D%0A%5Cbegin%7Bvmatrix%7D%0A%5Cboldsymbol%7Bi%7D%20%26%20%5Cboldsymbol%7Bj%7D%20%26%20%5Cboldsymbol%7Bk%7D%20%5C%5C%0A1%20%26%202%20%26%203%20%5C%5C%0A2%20%26%200%20%26%20-1%0A%5Cend%7Bvmatrix%7D

%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%20%3D%0A%5Cbegin%7Bvmatrix%7D%0A2%20%26%203%20%5C%5C%0A0%20%26%20-1%0A%5Cend%7Bvmatrix%7D%20%5Cboldsymbol%7Bi%7D%20-%0A%5Cbegin%7Bvmatrix%7D%0A1%20%26%203%20%5C%5C%0A2%20%26%20-1%0A%5Cend%7Bvmatrix%7D%20%5Cboldsymbol%7Bj%7D%20%2B%0A%5Cbegin%7Bvmatrix%7D%0A1%20%26%202%20%5C%5C%0A2%20%26%200%0A%5Cend%7Bvmatrix%7D%20%5Cboldsymbol%7Bk%7D

%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%20%3D%20%5B(2%20%5Ccdot%20-1)%20-%20(3%5Ccdot%200)%5D%5Cboldsymbol%7Bi%7D%20-%20%5B(1%5Ccdot%20-1)%20-%20(3%5Ccdot%202)%5D%5Cboldsymbol%7Bj%7D%20%2B%20%5B(1%20%5Ccdot%200)%20-%20(2%20%5Ccdot%202)%5D%20%5Cboldsymbol%7Bk%7D

%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%20%3D%20-2%5Cboldsymbol%7Bi%7D%20%2B%207%5Cboldsymbol%7Bj%7D%20-%204%5Cboldsymbol%7Bk%7D


Part 2

The norm of the cross product of two vectors %5Cboldsymbol%7BA%7D%2C%20%5Cboldsymbol%7BB%7D is the area of the parallelogram with side lengths of the norms of %5Cboldsymbol%7BA%7D%20 and %5Cboldsymbol%7BB%7D%20.

%7C%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%7C%20%3D%20%5Csqrt%7B(-2)%5E2%2B(7)%5E2%2B(-4)%5E2%7D

%7C%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%7C%20%3D%20%5Csqrt%7B69%7D

To determine the angle %5Ctheta between the vectors %5Cboldsymbol%7BA%7D%20 and %5Cboldsymbol%7BB%7D%20, use the formula

%7C%5Cboldsymbol%7BA%20%5Ctimes%20B%7D%7C%20%3D%20%7C%5Cboldsymbol%7BA%7D%7C%20%7C%5Cboldsymbol%7BB%7D%7C%20%5Csin%7B%5Ctheta%7D

%7C%5Cboldsymbol%7BA%7D%7C%20%3D%20%5Csqrt%7B(1)%5E2%2B(2)%5E2%2B(3)%5E2%7D%20%3D%20%5Csqrt%7B14%7D

%7C%5Cboldsymbol%7BB%7D%7C%20%3D%20%5Csqrt%7B(2)%5E2%2B(0)%5E2%2B(-1)%5E2%7D%20%3D%20%5Csqrt%7B5%7D

Thus,

%20%5Csin%7B%5Ctheta%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B69%7D%7D%7B%5Csqrt%7B14%7D%5Csqrt%7B5%7D%7D

%5Ctheta%20%3D%5Csin%5E%7B-1%7D%7B%5Cleft(%5Cfrac%7B%5Csqrt%7B69%7D%7D%7B%5Csqrt%7B70%7D%7D%5Cright)%7D

%5Ctheta%20%3D%2083.1354%5E%5Ccirc


Part 3
The fastest way to show that two vectors are orthogonal (perpendicular) is to take the dot-product. If the dot-product is zero, then the two vectors are orthogonal. This is the basis of the right-hand rule.

Let %20%5Cboldsymbol%7BC%7D%20%3D%20%5Clangle%20-2%2C7%2C-4%5Crangle, %5Cboldsymbol%7BA%7D%20%3D%20%5Clangle%201%2C2%2C3%5Crangle, and %5Cboldsymbol%7BB%7D%20%3D%20%5Clangle%202%2C0%2C-1%5Crangle.

%5Cboldsymbol%7BC%20%5Ccdot%20A%7D%20%3D%20(-2)(1)%20%2B%20(7)(2)%20%2B%20(-4)(3)%20%3D%200

%5Cboldsymbol%7BC%20%5Ccdot%20B%7D%20%3D%20(-2)(2)%20%2B%20(7)(0)%20%2B%20(-4)(-1)%20%3D%200


[Vectors] Cross Product的評論 (共 條)

分享到微博請遵守國家法律
凉山| 湾仔区| 九寨沟县| 双峰县| 九江市| 天祝| 永平县| 龙川县| 扎兰屯市| 仙桃市| 安图县| 通渭县| 林州市| 图们市| 察哈| 新建县| 宕昌县| 平远县| 内黄县| 浮梁县| 白河县| 伊金霍洛旗| 清水河县| 长丰县| 商都县| 彰武县| 三都| 黄浦区| 承德县| 瑞丽市| 无极县| 平利县| 永新县| 洪湖市| 西乌珠穆沁旗| 平邑县| 玉树县| 城口县| 泽州县| 河源市| 天峻县|